These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27593281)

  • 1. Removal of 2-ClBP from soil-water system using activated carbon supported nanoscale zerovalent iron.
    Zhang W; Yu T; Han X; Ying W
    J Environ Sci (China); 2016 Sep; 47():143-152. PubMed ID: 27593281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of reaction environments on the reactivity of PCB (2-chlorobiphenyl) over activated carbon impregnated with palladized iron.
    Choi H; Al-Abed SR
    J Hazard Mater; 2010 Jul; 179(1-3):869-74. PubMed ID: 20388583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The removal of chlorinated aliphatic hydrocarbons from water using reactive activated carbon: the influence of synthesis factors and reaction environments.
    Zhang W; Xiao T; Liu N; Ying W
    Environ Technol; 2018 May; 39(10):1328-1339. PubMed ID: 28488466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl.
    Choi H; Al-Abed SR; Agarwal S
    Environ Sci Technol; 2009 Jun; 43(11):4137-42. PubMed ID: 19569342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept.
    Phenrat T; Thongboot T; Lowry GV
    Environ Sci Technol; 2016 Jan; 50(2):872-80. PubMed ID: 26654836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenomenological and spectroscopic analysis on the effects of sediment ageing and organic carbon on the fate of a PCB congener spiked to sediment.
    Choi H; Nfodzo PA; Lawal WA; Al-Abed SR; Seo Y
    J Hazard Mater; 2012 Nov; 239-240():325-32. PubMed ID: 23000240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment characteristics of various sediment components spiked with 2-chlorobiphenyl using reactive activated carbon.
    Choi H
    J Hazard Mater; 2018 Apr; 347():1-7. PubMed ID: 29306215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast degradation, large capacity, and high electron efficiency of chloramphenicol removal by different carbon-supported nanoscale zerovalent iron.
    Xu J; Liu X; Cao Z; Bai W; Shi Q; Yang Y
    J Hazard Mater; 2020 Feb; 384():121253. PubMed ID: 31568957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.
    Deng B; Kim ES
    Water Environ Res; 2016 May; 88(5):394-402. PubMed ID: 27131303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Fenton-like removal of nitrobenzene via internal microelectrolysis in nano zerovalent iron/activated carbon composite.
    Hu S; Wu Y; Yao H; Lu C; Zhang C
    Water Sci Technol; 2016; 73(1):153-60. PubMed ID: 26744946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: mechanistic aspects and reactive capping barrier concept.
    Choi H; Agarwal S; Al-Abed SR
    Environ Sci Technol; 2009 Jan; 43(2):488-93. PubMed ID: 19238984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene.
    Tseng HH; Su JG; Liang C
    J Hazard Mater; 2011 Aug; 192(2):500-6. PubMed ID: 21676545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene.
    Yan J; Han L; Gao W; Xue S; Chen M
    Bioresour Technol; 2015 Jan; 175():269-74. PubMed ID: 25459832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification.
    Wang Q; Jeong SW; Choi H
    J Hazard Mater; 2012 Apr; 213-214():299-310. PubMed ID: 22386819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater.
    Li H; Chen YQ; Chen S; Wang XL; Guo S; Qiu YF; Liu YD; Duan XL; Yu YJ
    PLoS One; 2017; 12(3):e0172337. PubMed ID: 28264061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorptive selenite removal from water using iron-coated GAC adsorbents.
    Zhang N; Lin LS; Gang D
    Water Res; 2008 Aug; 42(14):3809-16. PubMed ID: 18694584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron.
    Wang Y; Zhou D; Wang Y; Zhu X; Jin S
    J Environ Sci (China); 2011; 23(8):1286-92. PubMed ID: 22128535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of arsenic from water by supported nano zero-valent iron on activated carbon.
    Zhu H; Jia Y; Wu X; Wang H
    J Hazard Mater; 2009 Dec; 172(2-3):1591-6. PubMed ID: 19733972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of 2-chlorobiphenyl oxidative degradation by nanoscale zero-valent iron in the presence of dissolved oxygen.
    Wang Y; Liu L; Fang G; Wang L; Kengara FO; Zhu C
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2265-2272. PubMed ID: 29119491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and efficient recovery of silver with nanoscale zerovalent iron supported on high performance activated carbon derived from straw biomass.
    Wang J; Zhang W; Kang X; Zhang C
    Environ Pollut; 2019 Dec; 255(Pt 1):113043. PubMed ID: 31622958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.