BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 27593555)

  • 1. Chitosan/poly-octanoic acid 2-thiophen-3-yl-ethyl ester blends as a scaffold to maintain myoblasts regeneration potential in vitro.
    Padilla C; Ramos A; González N; Isaacs M; Zacconi F; Olguín HC; Valenzuela LM
    J Biomed Mater Res A; 2017 Jan; 105(1):118-130. PubMed ID: 27593555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving myoblast differentiation on electrospun poly(ε-caprolactone) scaffolds.
    Abarzúa-Illanes PN; Padilla C; Ramos A; Isaacs M; Ramos-Grez J; Olguín HC; Valenzuela LM
    J Biomed Mater Res A; 2017 Aug; 105(8):2241-2251. PubMed ID: 28426898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing C2C12 myoblast differentiation using polycaprolactone-polypyrrole copolymer scaffolds.
    Browe D; Freeman J
    J Biomed Mater Res A; 2019 Jan; 107(1):220-231. PubMed ID: 30378775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration.
    Veleirinho B; Coelho DS; Dias PF; Maraschin M; Ribeiro-do-Valle RM; Lopes-da-Silva JA
    Int J Biol Macromol; 2012 Nov; 51(4):343-50. PubMed ID: 22652216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic hydrogel substrate supports robust expansion of murine myoblasts and enhances their engraftment.
    Ding K; Yang Z; Xu JZ; Liu WY; Zeng Q; Hou F; Lin S
    Exp Cell Res; 2015 Sep; 337(1):111-9. PubMed ID: 26210646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold.
    Kheradmandi M; Vasheghani-Farahani E; Ghiaseddin A; Ganji F
    J Biomed Mater Res A; 2016 Jul; 104(7):1720-7. PubMed ID: 26945909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating conductive structures for cell growth: growth and alignment of myogenic cell types on polythiophenes.
    Breukers RD; Gilmore KJ; Kita M; Wagner KK; Higgins MJ; Moulton SE; Clark GM; Officer DL; Kapsa RM; Wallace GG
    J Biomed Mater Res A; 2010 Oct; 95(1):256-68. PubMed ID: 20597125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds.
    Bettahalli NM; Arkesteijn IT; Wessling M; Poot AA; Stamatialis D
    Acta Biomater; 2013 Jun; 9(6):6928-35. PubMed ID: 23485858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring the degradation rate and release kinetics from poly(galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose.
    Natarajan J; Madras G; Chatterjee K
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1591-1602. PubMed ID: 26893047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adipose-derived stem-cell-implanted poly(ϵ-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model.
    Zhou Z; Yan H; Liu Y; Xiao D; Li W; Wang Q; Zhao Y; Sun K; Zhang M; Lu M
    Regen Med; 2018 Apr; 13(3):331-342. PubMed ID: 29717628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro osteogenic induction of human marrow-derived mesenchymal stem cells by PCL fibrous scaffolds containing dexamethazone-loaded chitosan microspheres.
    Omidvar N; Ganji F; Eslaminejad MB
    J Biomed Mater Res A; 2016 Jul; 104(7):1657-67. PubMed ID: 26916786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A poly (saccharide-ester-urethane) scaffold for mammalian cell growth.
    González-Torres M; Becerra-González M; Leyva-Gómez G; Lima E; González Mendoza O; Ruvalcaba-Paredes EK; Cortés H; Pineda C; Martínez-Torres A
    Cell Mol Biol (Noisy-le-grand); 2021 Nov; 67(3):113-117. PubMed ID: 34933725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR; Adams EF; Coombes AG
    Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of rat osteoblasts to polycaprolactone/chitosan blend porous scaffolds.
    Wu H; Wan Y; Dalai S; Zhang R
    J Biomed Mater Res A; 2010 Jan; 92(1):238-45. PubMed ID: 19172620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan selectively promotes adhesion of myoblasts over fibroblasts.
    Iyer SR; Udpa N; Gao Y
    J Biomed Mater Res A; 2015 Jun; 103(6):1899-906. PubMed ID: 24376078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of CCAAT/Enhancer-Binding Protein β Expression With the Phosphodiesterase Inhibitor Isobutylmethylxanthine Improves Myoblast Engraftment Into Dystrophic Muscle.
    Lala-Tabbert N; Fu D; Wiper-Bergeron N
    Stem Cells Transl Med; 2016 Apr; 5(4):500-10. PubMed ID: 26941360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering muscle cell alignment through 3D bioprinting.
    Mozetic P; Giannitelli SM; Gori M; Trombetta M; Rainer A
    J Biomed Mater Res A; 2017 Sep; 105(9):2582-2588. PubMed ID: 28544472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phenotypic response of bovine corneal endothelial cells on chitosan/polycaprolactone blends.
    Wang TJ; Wang IJ; Chen S; Chen YH; Young TH
    Colloids Surf B Biointerfaces; 2012 Feb; 90():236-43. PubMed ID: 22078926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.