These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27593613)

  • 1. Enhanced phytostabilization of cadmium by a halophyte-Acanthus ilicifolius L.
    Shackira AM; Puthur JT
    Int J Phytoremediation; 2017 Apr; 19(4):319-326. PubMed ID: 27593613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acanthus ilicifolius L. a promising candidate for phytostabilization of zinc.
    Shackira AM; Puthur JT; Nabeesa Salim E
    Environ Monit Assess; 2017 Jun; 189(6):282. PubMed ID: 28534307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cd
    M SA; Puthur JT
    Int J Phytoremediation; 2019; 21(9):866-877. PubMed ID: 31016993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological responses and antioxidant enzyme changes in Sulla coronaria inoculated by cadmium resistant bacteria.
    Chiboub M; Jebara SH; Saadani O; Fatnassi IC; Abdelkerim S; Jebara M
    J Plant Res; 2018 Jan; 131(1):99-110. PubMed ID: 28808815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Inoculation with Glomus versiforme on Cadmium Accumulation, Antioxidant Activities and Phytochelatins of Solanum photeinocarpum.
    Tan SY; Jiang QY; Zhuo F; Liu H; Wang YT; Li SS; Ye ZH; Jing YX
    PLoS One; 2015; 10(7):e0132347. PubMed ID: 26176959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unravelling the halophyte Suaeda maritima as an efficient candidate for phytostabilization of cadmium and lead: Implications from physiological, ionomic, and metabolomic responses.
    Fatnani D; Parida AK
    Plant Physiol Biochem; 2024 Jul; 212():108770. PubMed ID: 38823092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in lead tolerance between Kandelia obovata and Acanthus ilicifolius seedlings under varying treatment times.
    Yan Z; Tam NF
    Aquat Toxicol; 2013 Jan; 126():154-62. PubMed ID: 23202134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes.
    Manousaki E; Galanaki K; Papadimitriou L; Kalogerakis N
    Int J Phytoremediation; 2014; 16(7-12):755-69. PubMed ID: 24933883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth, accumulation, and antioxidative responses of two Salix genotypes exposed to cadmium and lead in hydroponic culture.
    Xu X; Yang B; Qin G; Wang H; Zhu Y; Zhang K; Yang H
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19770-19784. PubMed ID: 31090001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tolerance mechanism of cadmium in Ceratopteris pteridoides: Translocation and subcellular distribution.
    Bora MS; Gogoi N; Sarma KP
    Ecotoxicol Environ Saf; 2020 Jul; 197():110599. PubMed ID: 32304919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes.
    Shi G; Liu C; Cai Q; Liu Q; Hou C
    Bull Environ Contam Toxicol; 2010 Sep; 85(3):256-63. PubMed ID: 20640847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae).
    Sidhu GPS; Singh HP; Batish DR; Kohli RK
    Ecotoxicol Environ Saf; 2017 Jan; 135():209-215. PubMed ID: 27744137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytostabilization of arsenic and associated physio-anatomical changes in Acanthus ilicifolius L.
    Sarath NG; Shackira AM; El-Serehy HA; Hefft DI; Puthur JT
    Environ Pollut; 2022 Apr; 298():118828. PubMed ID: 35031406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium accumulation and tolerance of two castor cultivars in relation to antioxidant systems.
    Zhang H; Guo Q; Yang J; Chen T; Zhu G; Peters M; Wei R; Tian L; Wang C; Tan D; Ma J; Wang G; Wan Y
    J Environ Sci (China); 2014 Oct; 26(10):2048-55. PubMed ID: 25288549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of effective Pb resistant bacteria isolated from Lens culinaris growing in lead contaminated soils.
    Jebara SH; Abdelkerim S; Fatnassi IC; Chiboub M; Saadani O; Jebara M
    J Basic Microbiol; 2015 Mar; 55(3):346-53. PubMed ID: 24740715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.).
    Yu F; Liu K; Li M; Zhou Z; Deng H; Chen B
    Int J Phytoremediation; 2013; 15(6):513-21. PubMed ID: 23819293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of compost on metals phytostabilization potential of two halophytes species.
    Eissa MA
    Int J Phytoremediation; 2015; 17(7):662-8. PubMed ID: 25191928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site - a hydroponics experiment.
    Li S; Wang F; Ru M; Ni W
    Int J Phytoremediation; 2014; 16(7-12):1257-67. PubMed ID: 24933916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil.
    Kachout SS; Mansoura AB; Mechergui R; Leclerc JC; Rejeb MN; Ouerghi Z
    J Sci Food Agric; 2012 Jan; 92(2):336-42. PubMed ID: 21935956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium accumulation and tolerance of Lagerstroemia indica and Lagerstroemia fauriei (Lythraceae) seedlings for phytoremediation applications.
    Wang Y; Gu C; Bai S; Sun Z; Zhu T; Zhu X; Grit DH; Tembrock LR
    Int J Phytoremediation; 2016 Nov; 18(11):1104-12. PubMed ID: 27196684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.