These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 27594092)
1. Hybrid Structures for Surface-Enhanced Raman Scattering: DNA Origami/Gold Nanoparticle Dimer/Graphene. Prinz J; Matković A; Pešić J; Gajić R; Bald I Small; 2016 Oct; 12(39):5458-5467. PubMed ID: 27594092 [TBL] [Abstract][Full Text] [Related]
2. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Thacker VV; Herrmann LO; Sigle DO; Zhang T; Liedl T; Baumberg JJ; Keyser UF Nat Commun; 2014 Mar; 5():3448. PubMed ID: 24622339 [TBL] [Abstract][Full Text] [Related]
3. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas. Kanehira Y; Tapio K; Wegner G; Kogikoski S; Rüstig S; Prietzel C; Busch K; Bald I ACS Nano; 2023 Nov; 17(21):21227-21239. PubMed ID: 37847540 [TBL] [Abstract][Full Text] [Related]
5. Raman Enhancement of Nanoparticle Dimers Self-Assembled Using DNA Origami Nanotriangles. Kogikoski S; Tapio K; von Zander RE; Saalfrank P; Bald I Molecules; 2021 Mar; 26(6):. PubMed ID: 33802892 [TBL] [Abstract][Full Text] [Related]
6. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity. Prinz J; Heck C; Ellerik L; Merk V; Bald I Nanoscale; 2016 Mar; 8(10):5612-20. PubMed ID: 26892770 [TBL] [Abstract][Full Text] [Related]
7. Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. Pilo-Pais M; Watson A; Demers S; LaBean TH; Finkelstein G Nano Lett; 2014; 14(4):2099-104. PubMed ID: 24645937 [TBL] [Abstract][Full Text] [Related]
8. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering. Khalil I; Yehye WA; Julkapli NM; Rahmati S; Sina AA; Basirun WJ; Johan MR Biosens Bioelectron; 2019 Apr; 131():214-223. PubMed ID: 30844598 [TBL] [Abstract][Full Text] [Related]
9. Surface-Enhanced Raman Scattering Based on Controllable-Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection. Qiu H; Huo Y; Li Z; Zhang C; Chen P; Jiang S; Xu S; Ma Y; Wang S; Li H Chemphyschem; 2015 Oct; 16(14):2953-60. PubMed ID: 26266687 [TBL] [Abstract][Full Text] [Related]
10. Large-area, freestanding, single-layer graphene-gold: a hybrid plasmonic nanostructure. Iyer GR; Wang J; Wells G; Guruvenket S; Payne S; Bradley M; Borondics F ACS Nano; 2014 Jun; 8(6):6353-62. PubMed ID: 24860924 [TBL] [Abstract][Full Text] [Related]
11. Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. Ding X; Kong L; Wang J; Fang F; Li D; Liu J ACS Appl Mater Interfaces; 2013 Aug; 5(15):7072-8. PubMed ID: 23855919 [TBL] [Abstract][Full Text] [Related]
12. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection. Duan B; Zhou J; Fang Z; Wang C; Wang X; Hemond HF; Chan-Park MB; Duan H Nanoscale; 2015 Aug; 7(29):12606-13. PubMed ID: 26147399 [TBL] [Abstract][Full Text] [Related]
13. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
14. In situ regulation nanoarchitecture of Au nanoparticles/reduced graphene oxide colloid for sensitive and selective SERS detection of lead ions. Zhao L; Gu W; Zhang C; Shi X; Xian Y J Colloid Interface Sci; 2016 Mar; 465():279-85. PubMed ID: 26688120 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas. Simoncelli S; Roller EM; Urban P; Schreiber R; Turberfield AJ; Liedl T; Lohmüller T ACS Nano; 2016 Nov; 10(11):9809-9815. PubMed ID: 27649370 [TBL] [Abstract][Full Text] [Related]
17. Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering. Hartl C; Frank K; Amenitsch H; Fischer S; Liedl T; Nickel B Nano Lett; 2018 Apr; 18(4):2609-2615. PubMed ID: 29498287 [TBL] [Abstract][Full Text] [Related]
18. Combined Photothermal and Surface-Enhanced Raman Spectroscopy Effect from Spiky Noble Metal Nanoparticles Wrapped within Graphene-Polymer Layers: Using Layer-by-layer Modified Reduced Graphene Oxide as Reactive Precursors. Li X; Zhang Y; Wu Y; Duan Y; Luan X; Zhang Q; An Q ACS Appl Mater Interfaces; 2015 Sep; 7(34):19353-61. PubMed ID: 26269466 [TBL] [Abstract][Full Text] [Related]
19. Customized Self-Assembled Gold Nanoparticle-DNA Origami Composite Templates for Shape-Directed Growth of Plasmonic Structures. Sun M; Xie M; Jiang J; Qi Z; Wang L; Chao J Nano Lett; 2024 Jun; 24(22):6480-6487. PubMed ID: 38771966 [TBL] [Abstract][Full Text] [Related]
20. Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. He S; Liu KK; Su S; Yan J; Mao X; Wang D; He Y; Li LJ; Song S; Fan C Anal Chem; 2012 May; 84(10):4622-7. PubMed ID: 22497579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]