BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 27594099)

  • 1. A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation.
    van Gendt MJ; Briaire JJ; Kalkman RK; Frijns JHM
    Hear Res; 2016 Nov; 341():130-143. PubMed ID: 27594099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation.
    van Gendt MJ; Briaire JJ; Kalkman RK; Frijns JHM
    Hear Res; 2017 Aug; 351():19-33. PubMed ID: 28625417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of neural adaptation and degeneration on pulse-train ECAPs: A model study.
    van Gendt MJ; Briaire JJ; Frijns JHM
    Hear Res; 2019 Jun; 377():167-178. PubMed ID: 30947041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stimulus level on the temporal response properties of the auditory nerve in cochlear implants.
    Hughes ML; Laurello SA
    Hear Res; 2017 Aug; 351():116-129. PubMed ID: 28633960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relation between auditory-nerve temporal responses and perceptual rate integration in cochlear implants.
    Hughes ML; Baudhuin JL; Goehring JL
    Hear Res; 2014 Oct; 316():44-56. PubMed ID: 25093283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically evoked compound action potential (ECAP) of the cochlear nerve in response to pulsatile electrical stimulation of the cochlea in the rat: effects of stimulation at high rates.
    Haenggeli A; Zhang JS; Vischer MW; Pelizzone M; Rouiller EM
    Audiology; 1998; 37(6):353-71. PubMed ID: 9888192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of electrode position on spatiotemporal auditory nerve fiber responses: a 3D computational model study.
    Kang S; Chwodhury T; Moon IJ; Hong SH; Yang H; Won JH; Woo J
    Comput Math Methods Med; 2015; 2015():934382. PubMed ID: 25755675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.
    Gransier R; Deprez H; Hofmann M; Moonen M; van Wieringen A; Wouters J
    Hear Res; 2016 May; 335():149-160. PubMed ID: 26994660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of the Adaptation Recovery Function of the Auditory Nerve and Its Association With Advanced Age in Postlingually Deafened Adult Cochlear Implant Users.
    He S; Skidmore J; Carter BL
    Ear Hear; 2022 Sep-Oct 01; 43(5):1472-1486. PubMed ID: 35139051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal response properties of the auditory nerve: data from human cochlear-implant recipients.
    Hughes ML; Castioni EE; Goehring JL; Baudhuin JL
    Hear Res; 2012 Mar; 285(1-2):46-57. PubMed ID: 22326590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the threshold of single-pulse electrical stimuli using a stochastic auditory nerve model: the effects of noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):825-35. PubMed ID: 12848350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Adaptation of the Electrically Stimulated Auditory Nerve Is Not Affected by Advanced Age in Postlingually Deafened, Middle-aged, and Elderly Adult Cochlear Implant Users.
    He S; Skidmore J; Conroy S; Riggs WJ; Carter BL; Xie R
    Ear Hear; 2022 Jul-Aug 01; 43(4):1228-1244. PubMed ID: 34999595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Phenomenological Model Reproducing Temporal Response Characteristics of an Electrically Stimulated Auditory Nerve Fiber.
    Takanen M; Seeber BU
    Trends Hear; 2022; 26():23312165221117079. PubMed ID: 36071660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysics-inspired spike rate adaptation for computationally efficient phenomenological nerve modeling.
    de Nobel J; Martens SSM; Briaire JJ; Bäck THW; Kononova AV; Frijns JHM
    Hear Res; 2024 Jun; 447():109011. PubMed ID: 38692015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An introduction to the biophysics of the electrically evoked compound action potential.
    Rubinstein JT
    Int J Audiol; 2004 Dec; 43 Suppl 1():S3-9. PubMed ID: 15732375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of neural stochastic firing in cochlear implant stimulation by the addition of noise: a computational study of the influence of stimulation settings and spontaneous activity.
    Paglialonga A; Fiocchi S; Ravazzani P; Tognola G
    Comput Biol Med; 2010 Jun; 40(6):597-606. PubMed ID: 20471638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renewal-process approximation of a stochastic threshold model for electrical neural stimulation.
    Bruce IC; Irlicht LS; White MW; O'Leary SJ; Clark GM
    J Comput Neurosci; 2000; 9(2):119-32. PubMed ID: 11030517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of high-frequency electrical stimulation of the auditory nerve in an animal model of cochlear implants.
    Vischer M; Haenggeli A; Zhang J; Pelizzone M; Häusler R; Rouiller EM
    Am J Otol; 1997 Nov; 18(6 Suppl):S27-9. PubMed ID: 9391586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation.
    Rubinstein JT; Wilson BS; Finley CC; Abbas PJ
    Hear Res; 1999 Jan; 127(1-2):108-18. PubMed ID: 9925022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short and long-term adaptation in the auditory nerve stimulated with high-rate electrical pulse trains are better described by a power law.
    van Gendt MJ; Siebrecht M; Briaire JJ; Bohte SM; Frijns JHM
    Hear Res; 2020 Dec; 398():108090. PubMed ID: 33070033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.