BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 27594099)

  • 41. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
    Mino H; Rubinstein JT; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of electrode position on the dynamic range of a human auditory nerve fiber.
    Rattay F; Tanzer T
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35105835
    [No Abstract]   [Full Text] [Related]  

  • 43. The Sensitivity of the Electrically Stimulated Auditory Nerve to Amplitude Modulation Cues Declines With Advanced Age.
    Riggs WJ; Vaughan C; Skidmore J; Conroy S; Pellittieri A; Carter BL; Stegman CJ; He S
    Ear Hear; 2021; 42(5):1358-1372. PubMed ID: 33795616
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.
    Gordon KA; Papsin BC; Harrison RV
    Clin Neurophysiol; 2007 Aug; 118(8):1671-84. PubMed ID: 17588811
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrically evoked compound action potential polarity sensitivity, refractory-recovery, and behavioral multi-pulse integration as potential indices of neural health in cochlear-implant recipients.
    Hughes ML
    Hear Res; 2023 Jun; 433():108764. PubMed ID: 37062161
    [No Abstract]   [Full Text] [Related]  

  • 46. Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains.
    Litvak L; Delgutte B; Eddington D
    J Acoust Soc Am; 2001 Jul; 110(1):368-79. PubMed ID: 11508961
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains.
    Miller CA; Hu N; Zhang F; Robinson BK; Abbas PJ
    J Assoc Res Otolaryngol; 2008 Mar; 9(1):122-37. PubMed ID: 18204987
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Midbrain responses to micro-stimulation of the cochlea using high density thin-film arrays.
    Allitt BJ; Morgan SJ; Bell S; Nayagam DA; Arhatari B; Clark GM; Paolini AG
    Hear Res; 2012 May; 287(1-2):30-42. PubMed ID: 22531007
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains.
    Litvak LM; Delgutte B; Eddington DK
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2079-98. PubMed ID: 14587607
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction and control of neural responses to pulsatile electrical stimulation.
    Campbell LJ; Sly DJ; O'Leary SJ
    J Neural Eng; 2012 Apr; 9(2):026023. PubMed ID: 22419164
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A point process framework for modeling electrical stimulation of the auditory nerve.
    Goldwyn JH; Rubinstein JT; Shea-Brown E
    J Neurophysiol; 2012 Sep; 108(5):1430-52. PubMed ID: 22673331
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A phenomenological computational model of the evoked action potential fitted to human cochlear implant responses.
    Ramos-de-Miguel Á; Escobar JM; Greiner D; Benítez D; Rodríguez E; Oliver A; Hernández M; Ramos-Macías Á
    PLoS Comput Biol; 2022 May; 18(5):e1010134. PubMed ID: 35622861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Guinea pig auditory nerve response triggered by a high density electrode array.
    Jolly CN; Clopton BM; Spelman FA; Lineaweaver SK
    Med Prog Technol; 1997; 21 Suppl():13-23. PubMed ID: 9413824
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Response properties of the refractory auditory nerve fiber.
    Miller CA; Abbas PJ; Robinson BK
    J Assoc Res Otolaryngol; 2001 Sep; 2(3):216-32. PubMed ID: 11669395
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of temporal properties on compound action potentials in response to amplitude-modulated electric pulse trains in guinea pigs.
    Jeng FC; Abbas PJ; Hu N; Miller CA; Nourski KV; Robinson BK
    Hear Res; 2009 Jan; 247(1):47-59. PubMed ID: 19015019
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.
    Hu N; Miller CA; Abbas PJ; Robinson BK; Woo J
    J Assoc Res Otolaryngol; 2010 Dec; 11(4):641-56. PubMed ID: 20632064
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stimulation strategies and electrode design in computational models of the electrically stimulated cochlea: An overview of existing literature.
    Kalkman RK; Briaire JJ; Frijns JH
    Network; 2016; 27(2-3):107-134. PubMed ID: 27135951
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses.
    Woo J; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2009 May; 56(5):1348-59. PubMed ID: 19473930
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Determinants of the effectiveness of electric stimulation of the auditory nerve with cochlear implants: II. Configuration of the stimulating electrodes].
    Kral A; Hartmann R; Klinke R
    Bratisl Lek Listy; 2000; 101(3):170-2. PubMed ID: 10870263
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A computational modelling framework for assessing information transmission with cochlear implants.
    Leclère T; Johannesen PT; Wijetillake A; Segovia-Martínez M; Lopez-Poveda EA
    Hear Res; 2023 May; 432():108744. PubMed ID: 37004271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.