BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 27594428)

  • 1. Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mutations in Yeast.
    Venkataram S; Dunn B; Li Y; Agarwala A; Chang J; Ebel ER; Geiler-Samerotte K; Hérissant L; Blundell JR; Levy SF; Fisher DS; Sherlock G; Petrov DA
    Cell; 2016 Sep; 166(6):1585-1596.e22. PubMed ID: 27594428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation.
    Kinsler G; Geiler-Samerotte K; Petrov DA
    Elife; 2020 Dec; 9():. PubMed ID: 33263280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overdominant and partially dominant mutations drive clonal adaptation in diploid Saccharomyces cerevisiae.
    Aggeli D; Marad DA; Liu X; Buskirk SW; Levy SF; Lang GI
    Genetics; 2022 May; 221(2):. PubMed ID: 35435209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden Complexity of Yeast Adaptation under Simple Evolutionary Conditions.
    Li Y; Venkataram S; Agarwala A; Dunn B; Petrov DA; Sherlock G; Fisher DS
    Curr Biol; 2018 Feb; 28(4):515-525.e6. PubMed ID: 29429618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyploidy can drive rapid adaptation in yeast.
    Selmecki AM; Maruvka YE; Richmond PA; Guillet M; Shoresh N; Sorenson AL; De S; Kishony R; Michor F; Dowell R; Pellman D
    Nature; 2015 Mar; 519(7543):349-52. PubMed ID: 25731168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterozygote Advantage Is a Common Outcome of Adaptation in Saccharomyces cerevisiae.
    Sellis D; Kvitek DJ; Dunn B; Sherlock G; Petrov DA
    Genetics; 2016 Jul; 203(3):1401-13. PubMed ID: 27194750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Identification of Adaptive Mutations in Experimentally Evolved Yeast Populations.
    Payen C; Sunshine AB; Ong GT; Pogachar JL; Zhao W; Dunham MJ
    PLoS Genet; 2016 Oct; 12(10):e1006339. PubMed ID: 27727276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The number of mutations selected during adaptation in a laboratory population of Saccharomyces cerevisiae.
    Zeyl C
    Genetics; 2005 Apr; 169(4):1825-31. PubMed ID: 15744058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Influence of Polyploidy on the Evolution of Yeast Grown in a Sub-Optimal Carbon Source.
    Scott AL; Richmond PA; Dowell RD; Selmecki AM
    Mol Biol Evol; 2017 Oct; 34(10):2690-2703. PubMed ID: 28957510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high frequency of beneficial mutations across multiple fitness components in Saccharomyces cerevisiae.
    Hall DW; Joseph SB
    Genetics; 2010 Aug; 185(4):1397-409. PubMed ID: 20516495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diploidy and the selective advantage for sexual reproduction in unicellular organisms.
    Kleiman M; Tannenbaum E
    Theory Biosci; 2009 Nov; 128(4):249-85. PubMed ID: 19902285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haploids adapt faster than diploids across a range of environments.
    Gerstein AC; Cleathero LA; Mandegar MA; Otto SP
    J Evol Biol; 2011 Mar; 24(3):531-40. PubMed ID: 21159002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential paralog divergence modulates genome evolution across yeast species.
    Sanchez MR; Miller AW; Liachko I; Sunshine AB; Lynch B; Huang M; Alcantara E; DeSevo CG; Pai DA; Tucker CM; Hoang ML; Dunham MJ
    PLoS Genet; 2017 Feb; 13(2):e1006585. PubMed ID: 28196070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments.
    Hong J; Gresham D
    PLoS Genet; 2014 Jan; 10(1):e1004041. PubMed ID: 24415948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design.
    Dymond JS; Richardson SM; Coombes CE; Babatz T; Muller H; Annaluru N; Blake WJ; Schwerzmann JW; Dai J; Lindstrom DL; Boeke AC; Gottschling DE; Chandrasegaran S; Bader JS; Boeke JD
    Nature; 2011 Sep; 477(7365):471-6. PubMed ID: 21918511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape.
    Kvitek DJ; Sherlock G
    PLoS Genet; 2011 Apr; 7(4):e1002056. PubMed ID: 21552329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity.
    Kryazhimskiy S; Rice DP; Jerison ER; Desai MM
    Science; 2014 Jun; 344(6191):1519-1522. PubMed ID: 24970088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evolutionary advantage of haploidy in large yeast populations.
    Zeyl C; Vanderford T; Carter M
    Science; 2003 Jan; 299(5606):555-8. PubMed ID: 12543972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment.
    Kvitek DJ; Sherlock G
    PLoS Genet; 2013 Nov; 9(11):e1003972. PubMed ID: 24278038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous Changes in Ploidy Are Common in Yeast.
    Harari Y; Ram Y; Rappoport N; Hadany L; Kupiec M
    Curr Biol; 2018 Mar; 28(6):825-835.e4. PubMed ID: 29502947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.