These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27594517)

  • 1. A Size-Selective Intracellular Delivery Platform.
    Saung MT; Sharei A; Adalsteinsson VA; Cho N; Kamath T; Ruiz C; Kirkpatrick J; Patel N; Mino-Kenudson M; Thayer SP; Langer R; Jensen KF; Liss AS; Love JC
    Small; 2016 Nov; 12(42):5873-5881. PubMed ID: 27594517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic production and characterization of biofunctionalized giant unilamellar vesicles for targeted intracellular cargo delivery.
    Staufer O; Antona S; Zhang D; Csatári J; Schröter M; Janiesch JW; Fabritz S; Berger I; Platzman I; Spatz JP
    Biomaterials; 2021 Jan; 264():120203. PubMed ID: 32987317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery.
    Alhmoud H; Alkhaled M; Kaynak BE; Hanay MS
    Lab Chip; 2023 Feb; 23(4):714-726. PubMed ID: 36472226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogel-Induced Cell Membrane Disruptions Enable Direct Cytosolic Delivery of Membrane-Impermeable Cargo.
    Van Hoeck J; Van de Vyver T; Harizaj A; Goetgeluk G; Merckx P; Liu J; Wels M; Sauvage F; De Keersmaecker H; Vanhove C; de Jong OG; Vader P; Dewitte H; Vandekerckhove B; Braeckmans K; De Smedt SC; Raemdonck K
    Adv Mater; 2021 Jul; 33(30):e2008054. PubMed ID: 34106486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional cargo delivery into mouse and human fibroblasts using a versatile microfluidic device.
    Lam KH; Fernandez-Perez A; Schmidtke DW; Munshi NV
    Biomed Microdevices; 2018 Jun; 20(3):52. PubMed ID: 29938310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of intracellular drug delivery via rapid squeezing.
    Nikfar M; Razizadeh M; Paul R; Zhou Y; Liu Y
    Biomicrofluidics; 2021 Jul; 15(4):044102. PubMed ID: 34367404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient mRNA delivery with nonlinear microfluidic cell stretching for cellular engineering.
    Kwon C; Chung AJ
    Lab Chip; 2023 Mar; 23(7):1758-1767. PubMed ID: 36727443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Low-Backpressure Single-Cell Point Constriction for Cytosolic Delivery Based on Rapid Membrane Deformations.
    Xing X; Pan Y; Yobas L
    Anal Chem; 2018 Feb; 90(3):1836-1844. PubMed ID: 29308899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient and gentle delivery of molecules into cells with different elasticity
    Uvizl A; Goswami R; Gandhi SD; Augsburg M; Buchholz F; Guck J; Mansfeld J; Girardo S
    Lab Chip; 2021 Jun; 21(12):2437-2452. PubMed ID: 33977944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales].
    Cui J; Liu L; Li D; Piao X
    Se Pu; 2021 Nov; 39(11):1157-1170. PubMed ID: 34677011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Cytometry for High-Throughput Characterization of Single Cell Cytoplasmic Viscosity Using Crossing Constriction Channels.
    Wang K; Sun X; Zhang Y; Wei Y; Chen D; Wu H; Song Z; Long R; Wang J; Chen J
    Cytometry A; 2020 Jun; 97(6):630-637. PubMed ID: 31637858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Characterization of Cell Adhesion Strength Using Long-Channel Constriction-Based Microfluidics.
    Wei M; Zhang F; Zhang R; Lin JM; Yang N
    ACS Sens; 2021 Aug; 6(8):2838-2844. PubMed ID: 34279900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically controllable cargo delivery with dextran-rich droplets.
    Li M; Li D
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):102-111. PubMed ID: 32814218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretchable Inertial Microfluidic Device for Tunable Particle Separation.
    Fallahi H; Zhang J; Nicholls J; Phan HP; Nguyen NT
    Anal Chem; 2020 Sep; 92(18):12473-12480. PubMed ID: 32786464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and mutational assessment of pancreatic cancer extracellular vesicles using a microfluidic platform.
    Kamyabi N; Abbasgholizadeh R; Maitra A; Ardekani A; Biswal SL; Grande-Allen KJ
    Biomed Microdevices; 2020 Mar; 22(2):23. PubMed ID: 32162067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-demand deterministic release of particles and cells using stretchable microfluidics.
    Fallahi H; Cha H; Adelnia H; Dai Y; Ta HT; Yadav S; Zhang J; Nguyen NT
    Nanoscale Horiz; 2022 Mar; 7(4):414-424. PubMed ID: 35237777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ultra-compact acoustofluidic device based on the narrow-path travelling surface acoustic wave (np-TSAW) for label-free isolation of living circulating tumor cells.
    Geng W; Liu Y; Yu N; Qiao X; Ji M; Niu Y; Niu L; Fu W; Zhang H; Bi K; Chou X
    Anal Chim Acta; 2023 May; 1255():341138. PubMed ID: 37032055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells.
    Hur J; Park I; Lim KM; Doh J; Cho SG; Chung AJ
    ACS Nano; 2020 Nov; 14(11):15094-15106. PubMed ID: 33034446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell squeezing as a robust, microfluidic intracellular delivery platform.
    Sharei A; Cho N; Mao S; Jackson E; Poceviciute R; Adamo A; Zoldan J; Langer R; Jensen KF
    J Vis Exp; 2013 Nov; (81):e50980. PubMed ID: 24300077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.