BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 27594573)

  • 21. Enhancing the nitrogen and phosphorus content of faecal-derived biochar via adsorption and precipitation from human urine.
    Koulouri ME; Templeton MR; Fowler GD
    J Environ Manage; 2024 Feb; 352():119981. PubMed ID: 38198837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Adsorption of Low-Concentration Phosphorus from Water by Composite Metal Modified Biochar].
    Sun TT; Gao F; Lin L; Li R; Dong L
    Huan Jing Ke Xue; 2020 Feb; 41(2):784-791. PubMed ID: 32608738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption characteristics and mechanism of ammonia nitrogen and phosphate from biogas slurry by Ca2+-modified soybean straw biochar.
    Wu X; Ye M; Wang J; Wu F; Liu C; Li Z; Lin D; Yang R
    PLoS One; 2023; 18(8):e0290714. PubMed ID: 37624822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Characteristics of Phosphorus Adsorption in Aqueous Solution By Ca/Mg-Loaded Biogas Residue Biochar].
    Yi M; Li TT; Li HH; Huang Q; Yang JE; Chen YC; Yang ZM
    Huan Jing Ke Xue; 2019 Mar; 40(3):1318-1327. PubMed ID: 31087980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption recovery of phosphorus in contaminated water by calcium modified biochar derived from spent coffee grounds.
    Liu Y; Wang S; Huo J; Zhang X; Wen H; Zhang D; Zhao Y; Kang D; Guo W; Ngo HH
    Sci Total Environ; 2024 Jan; 909():168426. PubMed ID: 37944608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorus recovery by core-shell γ-Al
    Cui Q; Xu J; Wang W; Tan L; Cui Y; Wang T; Li G; She D; Zheng J
    Sci Total Environ; 2020 Aug; 729():138892. PubMed ID: 32360908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decolorization of acid black 24 by the FeGAC/H2O2 process.
    Fan HJ; Shu HY; Tajima K
    J Hazard Mater; 2006 Feb; 128(2-3):192-200. PubMed ID: 16154264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Struvite-based phosphorus recovery from the concentrated bioeffluent by using HFO nanocomposite adsorption: Effect of solution chemistry.
    Zhang Y; Zhang W; Pan B
    Chemosphere; 2015 Dec; 141():227-34. PubMed ID: 26246192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects and optimization of the use of biochar in anaerobic digestion of food wastes.
    Cai J; He P; Wang Y; Shao L; Lü F
    Waste Manag Res; 2016 May; 34(5):409-16. PubMed ID: 26951339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological and chemical phosphorus solubilization from pyrolytical biochar in aqueous solution.
    He H; Qian TT; Liu WJ; Jiang H; Yu HQ
    Chemosphere; 2014 Oct; 113():175-81. PubMed ID: 25065807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel chitosan and polyferric sulfate composite coagulant for biogas slurry pretreatment by simultaneous flocculation and floatation: Performance and underlying mechanisms.
    Xia R; Liu W; Nghiem LD; Cao D; Li Y; Li G; Luo W
    Water Res; 2024 Jul; 258():121781. PubMed ID: 38761597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A feasible biochar derived from biogas residue and its application in the efficient adsorption of tetracycline from an aqueous solution.
    Sheng X; Wang J; Cui Q; Zhang W; Zhu X
    Environ Res; 2022 May; 207():112175. PubMed ID: 34619130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochar Phosphorus Release Is Limited by High pH and Excess Calcium.
    Buss W; Assavavittayanon K; Shepherd JG; Heal KV; Sohi S
    J Environ Qual; 2018 Sep; 47(5):1298-1303. PubMed ID: 30272768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potentially migrating and residual components of biochar: Effects on phosphorus adsorption performance and storage capacity of black soil.
    Xue P; Hou R; Fu Q; Li T; Wang J; Zhou W; Shen W; Su Z; Wang Y
    Chemosphere; 2023 Sep; 336():139250. PubMed ID: 37343640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of H
    Patel S; Hedayati Marzbali M; Hakeem IG; Veluswamy G; Rathnayake N; Nahar K; Agnihotri S; Bergmann D; Surapaneni A; Gupta R; Sharma A; Shah K
    Waste Manag; 2023 Mar; 159():146-153. PubMed ID: 36764239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of feedstocks and modification methods on biochar's capacity to activate hydrogen peroxide for tetracycline removal.
    Wang Y; Dong H; Li L; Tian R; Chen J; Ning Q; Wang B; Tang L; Zeng G
    Bioresour Technol; 2019 Nov; 291():121840. PubMed ID: 31349174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars.
    Mohan D; Singh P; Sarswat A; Steele PH; Pittman CU
    J Colloid Interface Sci; 2015 Jun; 448():238-50. PubMed ID: 25744855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell.
    Sigot L; Ducom G; Benadda B; Labouré C
    Environ Technol; 2016; 37(1):86-95. PubMed ID: 26183696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochar from Pyrolysis of Biosolids for Nutrient Adsorption and Turfgrass Cultivation.
    Carey DE; McNamara PJ; Zitomer DH
    Water Environ Res; 2015 Dec; 87(12):2098-106. PubMed ID: 26652122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activated carbon/Fe(3)O(4) nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide.
    Do MH; Phan NH; Nguyen TD; Pham TT; Nguyen VK; Vu TT; Nguyen TK
    Chemosphere; 2011 Nov; 85(8):1269-76. PubMed ID: 21840037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.