These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 27594573)

  • 41. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H
    PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings.
    Yao Y; Gao B; Inyang M; Zimmerman AR; Cao X; Pullammanappallil P; Yang L
    J Hazard Mater; 2011 Jun; 190(1-3):501-7. PubMed ID: 21497441
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: influence of aggregate formation on process stability.
    Kleyböcker A; Liebrich M; Kasina M; Kraume M; Wittmaier M; Würdemann H
    Waste Manag; 2012 Jun; 32(6):1122-30. PubMed ID: 22405750
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biochar produced from anaerobically digested fiber reduces phosphorus in dairy lagoons.
    Streubel JD; Collins HP; Tarara JM; Cochran RL
    J Environ Qual; 2012; 41(4):1166-74. PubMed ID: 22751059
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced removal of phosphate and ammonium by MgO-biochar composites with NH
    Xiao R; Zhang H; Tu Z; Li R; Li S; Xu Z; Zhang Z
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7493-7503. PubMed ID: 31884547
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pilot-scale field study for ammonia removal from lagoon biogas using an acid wet scrubber.
    Lin H; Wu X; Miller C; Zhu J; Hadlocon LJ; Manuzon R; Zhao L
    J Environ Sci Health B; 2014; 49(6):439-48. PubMed ID: 24762182
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphate adsorption ability of biochar/Mg-Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl₂ as electrolyte.
    Jung KW; Jeong TU; Hwang MJ; Kim K; Ahn KH
    Bioresour Technol; 2015 Dec; 198():603-10. PubMed ID: 26433157
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermodynamic stabilization of hydrous ferric oxide by adsorption of phosphate and arsenate.
    Majzlan J
    Environ Sci Technol; 2011 Jun; 45(11):4726-32. PubMed ID: 21557572
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation of biochar with high absorbability and its nutrient adsorption-desorption behaviour.
    Gong H; Tan Z; Zhang L; Huang Q
    Sci Total Environ; 2019 Dec; 694():133728. PubMed ID: 31756818
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sediment metals adhering to biochar enhanced phosphorus adsorption in sediment capping.
    Gao C; Fan J; Zhang X; Gong Z; Tan Z
    Water Sci Technol; 2021 Oct; 84(8):2057-2067. PubMed ID: 34695030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of solids residence time on dynamic responses in chemical P removal.
    Conidi D; Parker WJ; Smith S
    Water Environ Res; 2019 Mar; 91(3):250-258. PubMed ID: 30624834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.
    Sun L; Chen D; Wan S; Yu Z
    Bioresour Technol; 2015 Dec; 198():300-8. PubMed ID: 26402873
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorptive selenite removal from water using a nano-hydrated ferric oxides (HFOs)/polymer hybrid adsorbent.
    Pan B; Xiao L; Nie G; Pan B; Wu J; Lv L; Zhang W; Zheng S
    J Environ Monit; 2010 Jan; 12(1):305-10. PubMed ID: 20082026
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production.
    Wang K; Brown RC; Homsy S; Martinez L; Sidhu SS
    Bioresour Technol; 2013 Jan; 127():494-9. PubMed ID: 23069615
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer.
    Sengupta S; Pandit A
    Water Res; 2011 May; 45(11):3318-30. PubMed ID: 21531433
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H
    Sun P; Li Y; Meng T; Zhang R; Song M; Ren J
    Water Res; 2018 Dec; 147():91-100. PubMed ID: 30300785
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Mechanism of Cr( VI) removal from aqueous solution using biochar promoted by humic acid].
    Ding WC; Tian XM; Wang DY; Zeng XL; Xu Q; Chen JK; Ai XY
    Huan Jing Ke Xue; 2012 Nov; 33(11):3847-53. PubMed ID: 23323415
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization and mechanism studies on cell disruption and phosphorus recovery from microalgae with magnesium modified hydrochar in assisted hydrothermal system.
    Deng Y; Zhang T; Sharma BK; Nie H
    Sci Total Environ; 2019 Jan; 646():1140-1154. PubMed ID: 30235600
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Capacity of biochar application to maintain energy crop productivity: soil chemistry, sorghum growth, and runoff water quality effects.
    Schnell RW; Vietor DM; Provin TL; Munster CL; Capareda S
    J Environ Qual; 2012; 41(4):1044-51. PubMed ID: 22751046
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of Pb2+ using a biochar-alginate capsule in aqueous solution and capsule regeneration.
    Do XH; Lee BK
    J Environ Manage; 2013 Dec; 131():375-82. PubMed ID: 24211566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.