These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27594860)

  • 41. Bulk segregant analysis-sequencing and RNA-Seq analyses reveal candidate genes associated with albino phenotype in
    Ye S; Yang J; Huang Y; Liu J; Ma X; Zhao L; Ma C; Tu J; Shen J; Fu T; Wen J
    Front Plant Sci; 2022; 13():994616. PubMed ID: 36119587
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The initial deficiency of protein processing and flavonoids biosynthesis were the main mechanisms for the male sterility induced by SX-1 in Brassica napus.
    Ning L; Lin Z; Gu J; Gan L; Li Y; Wang H; Miao L; Zhang L; Wang B; Li M
    BMC Genomics; 2018 Nov; 19(1):806. PubMed ID: 30404610
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus.
    Meng JG; Zhang XD; Tan SK; Zhao KX; Yang ZM
    Biometals; 2017 Dec; 30(6):917-931. PubMed ID: 28993932
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage.
    Hwang SG; Kim KH; Lee BM; Moon JC
    Genes Genomics; 2018 Jul; 40(7):755-766. PubMed ID: 29934814
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptional Regulatory Network of GA Floral Induction Pathway in LA Hybrid Lily.
    Li W; Yong Y; Zhang Y; Lyu Y
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31159293
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative analysis of sugarcane root transcriptome in response to the plant growth-promoting Burkholderia anthina MYSP113.
    Malviya MK; Li CN; Solanki MK; Singh RK; Htun R; Singh P; Verma KK; Yang LT; Li YR
    PLoS One; 2020; 15(4):e0231206. PubMed ID: 32267863
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification and functional prediction of stress responsive AP2/ERF transcription factors in Brassica napus by genome-wide analysis.
    Owji H; Hajiebrahimi A; Seradj H; Hemmati S
    Comput Biol Chem; 2017 Dec; 71():32-56. PubMed ID: 28961511
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A quantitative transcriptomic analysis of the physiological significance of mTOR signaling in goat fetal fibroblasts.
    Fu Y; Zheng X; Jia X; Binderiya U; Wang Y; Bao W; Bao L; Zhao K; Fu Y; Hao H; Wang Z
    BMC Genomics; 2016 Nov; 17(1):879. PubMed ID: 27821074
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome-wide mining and comparative analysis of fatty acid elongase gene family in Brassica napus and its progenitors.
    Xue Y; Jiang J; Yang X; Jiang H; Du Y; Liu X; Xie R; Chai Y
    Gene; 2020 Jul; 747():144674. PubMed ID: 32304781
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-Wide Identification and Comparative Expression Profile Analysis of the Long-Chain Acyl-CoA synthetase (LACS) Gene Family in Two Different Oil Content Cultivars of Brassica napus.
    Xiao Z; Li N; Wang S; Sun J; Zhang L; Zhang C; Yang H; Zhao H; Yang B; Wei L; Du H; Qu C; Lu K; Li J
    Biochem Genet; 2019 Dec; 57(6):781-800. PubMed ID: 31011871
    [TBL] [Abstract][Full Text] [Related]  

  • 51. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris.
    Li W; Zhang L; Ding Z; Wang G; Zhang Y; Gong H; Chang T; Zhang Y
    BMC Plant Biol; 2017 Feb; 17(1):54. PubMed ID: 28241786
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genome-wide transcriptome profiling revealed biological macromolecules respond to low temperature stress in
    Hussain MA; Luo D; Zeng L; Ding X; Cheng Y; Zou X; Lv Y; Lu G
    Front Plant Sci; 2022; 13():1050995. PubMed ID: 36452101
    [No Abstract]   [Full Text] [Related]  

  • 53. Comparative transcriptome analysis of compatible and incompatible
    Yang L; Zhao C; Bai Z; Yang L; Schranz ME; Liu S; Bouwmeester K
    Front Plant Sci; 2022; 13():960874. PubMed ID: 36105711
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Joint genome-wide association and transcriptome sequencing reveals a complex polygenic network underlying hypocotyl elongation in rapeseed (Brassica napus L.).
    Luo X; Xue Z; Ma C; Hu K; Zeng Z; Dou S; Tu J; Shen J; Yi B; Fu T
    Sci Rep; 2017 Jan; 7():41561. PubMed ID: 28139730
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptome and Hormone Comparison of Three Cytoplasmic Male Sterile Systems in
    Ding B; Hao M; Mei D; Zaman QU; Sang S; Wang H; Wang W; Fu L; Cheng H; Hu Q
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30545163
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The biochemical composition and transcriptome of cotyledons from Brassica napus lines expressing the AtGL3 transcription factor and exhibiting reduced flea beetle feeding.
    Gruber M; Alahakoon U; Taheri A; Nagubushana N; Zhou R; Aung B; Sharpe A; Hannoufa A; Bonham-Smith P; Hegedus D DD
    BMC Plant Biol; 2018 Apr; 18(1):64. PubMed ID: 29661140
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.).
    Ye J; Yang Y; Chen B; Shi J; Luo M; Zhan J; Wang X; Liu G; Wang H
    BMC Genomics; 2017 Jan; 18(1):71. PubMed ID: 28077071
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative Transcriptomic Analysis of Two
    Wang J; Singh SK; Du C; Li C; Fan J; Pattanaik S; Yuan L
    Front Plant Sci; 2016; 7():1498. PubMed ID: 27746810
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium.
    Li Z; Cheng Y; Cui J; Zhang P; Zhao H; Hu S
    BMC Genomics; 2015 Mar; 16(1):206. PubMed ID: 25880309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines.
    Chittem K; Yajima WR; Goswami RS; Del Río Mendoza LE
    PLoS One; 2020; 15(3):e0229844. PubMed ID: 32160211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.