These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27595193)

  • 1. PEALD YSZ-based bilayer electrolyte for thin film-solid oxide fuel cells.
    Yu W; Cho GY; Hong S; Lee Y; Kim YB; An J; Cha SW
    Nanotechnology; 2016 Oct; 27(41):415402. PubMed ID: 27595193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate.
    Ji S; Cho GY; Yu W; Su PC; Lee MH; Cha SW
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):2998-3002. PubMed ID: 25625537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid Oxide Fuel Cells with Magnetron Sputtered Single-Layer SDC and Multilayer SDC/YSZ/SDC Electrolytes.
    Solovyev A; Shipilova A; Smolyanskiy E
    Membranes (Basel); 2023 Jun; 13(6):. PubMed ID: 37367789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid oxide fuel cell with a spin-coated yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolyte.
    Li J; Fan L; Hou N; Zhao Y; Li Y
    RSC Adv; 2022 Apr; 12(21):13220-13227. PubMed ID: 35520125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of ScSZ/GDC bilayer thin film electrolyte for anodic aluminum oxide supported low temperature solid oxide fuel cells.
    Cho GY; Kim Y; Hong SW; Yu W; Kim YB; Cha SW
    Nanotechnology; 2018 Aug; 29(34):345401. PubMed ID: 29708505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Properties of Intermediate-Temperature Solid Oxide Fuel Cells with Thin Film Gadolinium-Doped Ceria Electrolyte.
    Solovyev A; Shipilova A; Smolyanskiy E; Rabotkin S; Semenov V
    Membranes (Basel); 2022 Sep; 12(9):. PubMed ID: 36135914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocrystal Engineering of Thin-Film Yttria-Stabilized Zirconia Electrolytes for Low-Temperature Solid-Oxide Fuel Cells.
    Ryu S; Choi IW; Kim YJ; Lee S; Jeong W; Yu W; Cho GY; Cha SW
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42659-42666. PubMed ID: 37665642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition.
    Ji S; Chang I; Lee YH; Park J; Paek JY; Lee MH; Cha SW
    Nanoscale Res Lett; 2013 Jan; 8(1):48. PubMed ID: 23342963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-annealing of thin-film yttria stabilized zirconia electrolytes for anode-supported low-temperature solid oxide fuel cells.
    Bae J; Chang I; Kang S; Hong S; Cha SW; Kim YB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9294-9. PubMed ID: 25971054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured thin solid oxide fuel cells with high power density.
    Ignatiev A; Chen X; Wu N; Lu Z; Smith L
    Dalton Trans; 2008 Oct; (40):5501-6. PubMed ID: 19082034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modification of yttria-stabilized zirconia electrolyte by atomic layer deposition.
    Chao CC; Kim YB; Prinz FB
    Nano Lett; 2009 Oct; 9(10):3626-8. PubMed ID: 19824708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Deposition Modes and Thermal Annealing on Residual Stresses in Magnetron-Sputtered YSZ Membranes.
    Solovyev A; Rabotkin S; Shipilova A; Agarkov D; Burmistrov I; Shmakov A
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Reversibility of Thin-Film Solid Oxide Cells at 500 °C by Tailoring Sputtering Processes for Depositing Yttria-Stabilized Zirconia Electrolyte.
    Lee S; Yu W; Jang Y; Ryu S; Hwang J; Cho GY; Ahn DG; Cha SW
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):37874-37884. PubMed ID: 38993051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-Sputtered, Superior Power Density Thin-Film Solid Oxide Fuel Cells with a Novel Nanofibrous Ceramic Cathode.
    Lee YH; Ren H; Wu EA; Fullerton EE; Meng YS; Minh NQ
    Nano Lett; 2020 May; 20(5):2943-2949. PubMed ID: 32176514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells.
    Liu T; Ren C; Fang S; Wang Y; Chen F
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Silicon-Based Nanothin Film Solid Oxide Fuel Cell Array with Edge Reinforced Support for Enhanced Thermal Mechanical Stability.
    Baek JD; Yu CC; Su PC
    Nano Lett; 2016 Apr; 16(4):2413-7. PubMed ID: 26990604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of Solid Oxide Fuel Cell With La and Cr Co-doped SrTiO
    Yi F; Chen H; Li H
    J Fuel Cell Sci Technol; 2014 Jun; 11(3):0310061-310064. PubMed ID: 24891845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of interlayer on structure and performance of anode-supported SOFC single cells.
    Eom TW; Yang HK; Kim KH; Yoon HH; Kim JS; Park SJ
    Ultramicroscopy; 2008 Sep; 108(10):1283-7. PubMed ID: 18571861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD).
    Oh EO; Whang CM; Lee YR; Park SY; Prasad DH; Yoon KJ; Son JW; Lee JH; Lee HW
    Adv Mater; 2012 Jul; 24(25):3373-7. PubMed ID: 22648864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.
    Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28701-7. PubMed ID: 26642379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.