These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27595193)

  • 21. Elucidating the performance benefits enabled by YSZ/Ni-YSZ bilayer thin films in a porous anode-supported cell architecture.
    Develos-Bagarinao K; Yamaguchi T; Kishimoto H
    Nanoscale; 2023 Jul; 15(27):11569-11581. PubMed ID: 37376979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functionally Graded Bismuth Oxide/Zirconia Bilayer Electrolytes for High-Performance Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs).
    Joh DW; Park JH; Kim D; Wachsman ED; Lee KT
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8443-8449. PubMed ID: 28248479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support.
    Panthi D; Tsutsumi A
    Sci Rep; 2014 Aug; 4():5754. PubMed ID: 25169166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intermediate-Temperature Solid-Oxide Fuel Cells with a Gadolinium-Doped Ceria Anodic Functional Layer Deposited via Radio-Frequency Sputtering.
    Tanveer WH; Ji S; Yu W; Cho GY; Lee YH; Cha SW
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8926-30. PubMed ID: 26726620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction.
    Su C; Shao Z; Lin Y; Wu Y; Wang H
    Phys Chem Chem Phys; 2012 Sep; 14(35):12173-81. PubMed ID: 22870505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polarization-Induced Interface and Sr Segregation of in Situ Assembled La
    Chen K; Li N; Ai N; Cheng Y; Rickard WD; Jiang SP
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31729-31737. PubMed ID: 27808496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brookite TiO2 thin film epitaxially grown on (110) YSZ substrate by atomic layer deposition.
    Kim DH; Kim WS; Kim S; Hong SH
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11817-22. PubMed ID: 25007217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Formation of Er
    He S; Zhang Q; Maurizio G; Catellani L; Chen K; Chang Q; Santarelli M; Jiang SP
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40549-40559. PubMed ID: 30394736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailoring the Microstructure of a Solid Oxide Fuel Cell Anode Support by Calcination and Milling of YSZ.
    Hanifi AR; Laguna-Bercero MA; Sandhu NK; Etsell TH; Sarkar P
    Sci Rep; 2016 Jun; 6():27359. PubMed ID: 27270152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural, Optical and Electrical Properties of HfO
    Kim KM; Jang JS; Yoon SG; Yun JY; Chung NK
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32344793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced oxygen exchange on surface-engineered yttria-stabilized zirconia.
    Chao CC; Park JS; Tian X; Shim JH; Gür TM; Prinz FB
    ACS Nano; 2013 Mar; 7(3):2186-91. PubMed ID: 23397972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A high-performance Ni-CeO
    Sasaki K; Takahashi I; Kuramoto K; Shin-Mura K
    R Soc Open Sci; 2022 Jul; 9(7):220227. PubMed ID: 35875470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solid oxide fuel cell with corrugated thin film electrolyte.
    Su PC; Chao CC; Shim JH; Fasching R; Prinz FB
    Nano Lett; 2008 Aug; 8(8):2289-92. PubMed ID: 18605702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte.
    Ji S; Tanveer WH; Yu W; Kang S; Cho GY; Kim SH; An J; Cha SW
    Beilstein J Nanotechnol; 2015; 6():1805-10. PubMed ID: 26425432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High performance anode-supported tubular solid oxide fuel cells fabricated by a novel slurry-casting method.
    Duan NQ; Yan D; Chi B; Pu J; Jian L
    Sci Rep; 2015 Feb; 5():8174. PubMed ID: 25640168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Operando X-ray Investigation of Electrode/Electrolyte Interfaces in Model Solid Oxide Fuel Cells.
    Volkov S; Vonk V; Khorshidi N; Franz D; Kubicek M; Kilic V; Felici R; Huber TM; Navickas E; Rupp GM; Fleig J; Stierle A
    Chem Mater; 2016 Jun; 28(11):3727-3733. PubMed ID: 27346923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geometry-controlled triple phase boundary study for low-temperature solid oxide fuel cells reaction kinetics.
    Kim YB
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7895-901. PubMed ID: 24266160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical stability of Sm(0.5)Sr(0.5)CoO(3-δ)-infiltrated YSZ for solid oxide fuel cells/electrolysis cells.
    Fan H; Han M
    Faraday Discuss; 2015; 182():477-91. PubMed ID: 26212177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.
    Yue X; Arenillas A; Irvine JT
    Faraday Discuss; 2016 Aug; 190():269-89. PubMed ID: 27272986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel microstructural strategies to enhance the electrochemical performance of La0.8Sr0.2MnO3-δ cathodes.
    Dos Santos-Gómez L; Losilla ER; Martín F; Ramos-Barrado JR; Marrero-López D
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7197-205. PubMed ID: 25793738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.