These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 2759531)

  • 21. [Anything new concerning the human lens and senile cataract (author's transl)].
    Nordmann J
    J Fr Ophtalmol; 1981; 4(5):359-73. PubMed ID: 6273466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts.
    Yan H; Lou MF; Fernando MR; Harding JJ
    Mol Vis; 2006 Oct; 12():1153-9. PubMed ID: 17093401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Clinical and time factors of various forms of senile cataract. (Prospective study)].
    Pau H
    Klin Monbl Augenheilkd; 1983 Aug; 183(2):90-5. PubMed ID: 6632685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in erythrocyte glucose-6-phosphate dehydrogenase (G6PD) and reduced glutathione (GSH) activities in the development of senile and diabetic cataracts.
    Chandrasena LG; De Silva LD; De Silva KI; Dissanayaka P; Peiris H
    Southeast Asian J Trop Med Public Health; 2008 Jul; 39(4):731-6. PubMed ID: 19058613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of protein tyrosine phosphatase-1B on Na,K-ATPase activity in lens.
    Bozulic LD; Dean WL; Delamere NA
    J Cell Physiol; 2004 Sep; 200(3):370-6. PubMed ID: 15254964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutathione and NADP linked enzymes in human senile cataract.
    Friedburg D; Manthey KF
    Exp Eye Res; 1973 Feb; 15(2):173-7. PubMed ID: 4692229
    [No Abstract]   [Full Text] [Related]  

  • 27. Glutathione reductase from human cataract lenses can be revived by reducing agents and by a molecular chaperone, alpha-crystallin.
    Rachdan D; Lou MF; Harding JJ
    Curr Eye Res; 2005 Oct; 30(10):919-25. PubMed ID: 16251130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Aging of the human lens and pathogenesis of senile cataract].
    Nordmann J
    Adv Ophthalmol; 1977; 34():1-73. PubMed ID: 141198
    [No Abstract]   [Full Text] [Related]  

  • 29. A transgenic animal model of osmotic cataract. Part 1: over-expression of bovine Na+/myo-inositol cotransporter in lens fibers.
    Cammarata PR; Zhou C; Chen G; Singh I; Reeves RE; Kuszak JR; Robinson ML
    Invest Ophthalmol Vis Sci; 1999 Jul; 40(8):1727-37. PubMed ID: 10393042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nucleotide levels in human lens: regional distribution in different forms of senile cataract.
    Deussen A; Pau H
    Exp Eye Res; 1989 Jan; 48(1):37-47. PubMed ID: 2920783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzyme activities and crystallin profiles of clear and cataractous lenses of the RCS rat.
    Dovrat A; Ding LL; Horwitz J
    Exp Eye Res; 1993 Aug; 57(2):217-24. PubMed ID: 8405188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlates of lens thickness: the Beaver Dam Eye Study.
    Klein BE; Klein R; Moss SE
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1507-10. PubMed ID: 9660501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Na,K-ATPase in lens epithelia from patients with senile cataracts.
    Tseng SH; Tang MJ
    J Formos Med Assoc; 1999 Sep; 98(9):627-32. PubMed ID: 10560239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Philly mouse: a new model of hereditary cataract.
    Kador PF; Fukui HN; Fukushi S; Jernigan HM; Kinoshita JH
    Exp Eye Res; 1980 Jan; 30(1):59-68. PubMed ID: 7363969
    [No Abstract]   [Full Text] [Related]  

  • 35. Age-dependent denaturation of enzymes in the human lens: a paradigm for organismic aging?
    Zhu X; Korlimbinis A; Truscott RJ
    Rejuvenation Res; 2010 Oct; 13(5):553-60. PubMed ID: 20586645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Glutathione content of the lens in various forms of cataract].
    Pau H; Graf P; Sies H
    Graefes Arch Clin Exp Ophthalmol; 1982; 219(3):140-2. PubMed ID: 6293935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbohydrate metabolism of the lens depending on age. V. Problems of mathematical approach and graphical presentation.
    Hockwin O; Fink H; Schallenberg H; Rast F
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1975; 195(1):17-26. PubMed ID: 1080019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of busulfan on crystalline lens--glutathione, glutathione reductase and glucose-6-phosphate dehydrogenase.
    Cherian M; Rawal UM
    Indian J Exp Biol; 1989 Oct; 27(10):915-6. PubMed ID: 2635153
    [No Abstract]   [Full Text] [Related]  

  • 39. Studies of lens enzyme activities in relation to cataract type and plasma constituents.
    Ohrloff C; Korte I; Doffin I; Elsing M; Hockwin O; Bartholomew RS; Clayton R; Cuthbert J; Phillips CI; Seth I
    Ophthalmic Res; 1983; 15(3):136-9. PubMed ID: 6415562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in mitochondrial cytochrome c oxidase mRNA levels with cataract severity in lens epithelia of Japanese patients.
    Nagai N; Mano Y; Otake H; Shibata T; Kubo E; Sasaki H
    Mol Med Rep; 2019 Jun; 19(6):5464-5472. PubMed ID: 31059062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.