These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 27595406)

  • 1. Directing cellular information flow via CRISPR signal conductors.
    Liu Y; Zhan Y; Chen Z; He A; Li J; Wu H; Liu L; Zhuang C; Lin J; Guo X; Zhang Q; Huang W; Cai Z
    Nat Methods; 2016 Nov; 13(11):938-944. PubMed ID: 27595406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic Evaluation of CRISPRa and CRISPRi Modalities Enables Development of a Multiplexed, Orthogonal Gene Activation and Repression System.
    Martella A; Firth M; Taylor BJM; Göppert A; Cuomo EM; Roth RG; Dickson AJ; Fisher DI
    ACS Synth Biol; 2019 Sep; 8(9):1998-2006. PubMed ID: 31398008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building Endogenous Gene Connections through RNA Self-Assembly Controlled CRISPR/Cas9 Function.
    Lin J; Wang WJ; Wang Y; Liu Y; Xu L
    J Am Chem Soc; 2021 Dec; 143(47):19834-19843. PubMed ID: 34788038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprogramming of Fibroblasts to Human iPSCs by CRISPR Activators.
    Weltner J; Trokovic R
    Methods Mol Biol; 2021; 2239():175-198. PubMed ID: 33226620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/dCas9-mediated activation of multiple endogenous target genes directly converts human foreskin fibroblasts into Leydig-like cells.
    Huang H; Zou X; Zhong L; Hou Y; Zhou J; Zhang Z; Xing X; Sun J
    J Cell Mol Med; 2019 Sep; 23(9):6072-6084. PubMed ID: 31264792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the Activity of CRISPR Transcriptional Regulators with Inducible sgRNAs.
    Ferry QRV; Fulga TA
    Methods Mol Biol; 2021; 2162():153-184. PubMed ID: 32926382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates.
    Gander MW; Vrana JD; Voje WE; Carothers JM; Klavins E
    Nat Commun; 2017 May; 8():15459. PubMed ID: 28541304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishing artificial gene connections through RNA displacement-assembly-controlled CRISPR/Cas9 function.
    Wang WJ; Lin J; Wu CQ; Luo AL; Xing X; Xu L
    Nucleic Acids Res; 2023 Aug; 51(14):7691-7703. PubMed ID: 37395400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting RLIP with CRISPR/Cas9 controls tumor growth.
    Singhal J; Chikara S; Horne D; Awasthi S; Salgia R; Singhal SS
    Carcinogenesis; 2021 Feb; 42(1):48-57. PubMed ID: 32426802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature.
    Liu Q; He D; Xie L
    PLoS Comput Biol; 2019 Oct; 15(10):e1007480. PubMed ID: 31658261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthogonal Genetic Regulation in Human Cells Using Chemically Induced CRISPR/Cas9 Activators.
    Bao Z; Jain S; Jaroenpuntaruk V; Zhao H
    ACS Synth Biol; 2017 Apr; 6(4):686-693. PubMed ID: 28054767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells.
    Pickar-Oliver A; Black JB; Lewis MM; Mutchnick KJ; Klann TS; Gilcrest KA; Sitton MJ; Nelson CE; Barrera A; Bartelt LC; Reddy TE; Beisel CL; Barrangou R; Gersbach CA
    Nat Biotechnol; 2019 Dec; 37(12):1493-1501. PubMed ID: 31548729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective targeting of KRAS oncogenic alleles by CRISPR/Cas9 inhibits proliferation of cancer cells.
    Lee W; Lee JH; Jun S; Lee JH; Bang D
    Sci Rep; 2018 Aug; 8(1):11879. PubMed ID: 30089886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reprogramming of Fibroblasts to Oligodendrocyte Progenitor-like Cells Using CRISPR/Cas9-Based Synthetic Transcription Factors.
    Matjusaitis M; Wagstaff LJ; Martella A; Baranowski B; Blin C; Gogolok S; Williams A; Pollard SM
    Stem Cell Reports; 2019 Dec; 13(6):1053-1067. PubMed ID: 31708478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable CRISPR-Cas Repression, Activation, and Computation with Sequence-Independent Targets and Triggers.
    Jin M; Garreau de Loubresse N; Kim Y; Kim J; Yin P
    ACS Synth Biol; 2019 Jul; 8(7):1583-1589. PubMed ID: 31290648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesizing artificial devices that redirect cellular information at will.
    Liu Y; Li J; Chen Z; Huang W; Cai Z
    Elife; 2018 Jan; 7():. PubMed ID: 29319503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Input Sensing and Signal Integration Using a Split Cas12a System.
    Kempton HR; Goudy LE; Love KS; Qi LS
    Mol Cell; 2020 Apr; 78(1):184-191.e3. PubMed ID: 32027839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks.
    Nielsen AA; Voigt CA
    Mol Syst Biol; 2014 Nov; 10(11):763. PubMed ID: 25422271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds.
    Zalatan JG; Lee ME; Almeida R; Gilbert LA; Whitehead EH; La Russa M; Tsai JC; Weissman JS; Dueber JE; Qi LS; Lim WA
    Cell; 2015 Jan; 160(1-2):339-50. PubMed ID: 25533786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.
    Ui-Tei K; Maruyama S; Nakano Y
    Genome; 2017 Jun; 60(6):537-545. PubMed ID: 28177825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.