BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27595704)

  • 1. Application of Contois, Tessier, and first-order kinetics for modeling and simulation of a composting decomposition process.
    Wang Y; Witarsa F
    Bioresour Technol; 2016 Nov; 220():384-393. PubMed ID: 27595704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling of olive mill waste composting process.
    Vasiliadou IA; Muktadirul Bari Chowdhury AK; Akratos CS; Tekerlekopoulou AG; Pavlou S; Vayenas DV
    Waste Manag; 2015 Sep; 43():61-71. PubMed ID: 26174354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of water soluble and water insoluble organic fractions to oxygen uptake rate during high rate composting.
    Giuliana D; Fabrizio A
    Biodegradation; 2007 Feb; 18(1):103-13. PubMed ID: 16477349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial community succession and lignocellulose degradation during agricultural waste composting.
    Yu H; Zeng G; Huang H; Xi X; Wang R; Huang D; Huang G; Li J
    Biodegradation; 2007 Dec; 18(6):793-802. PubMed ID: 17308882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions.
    Vikman M; Karjomaa S; Kapanen A; Wallenius K; Itävaara M
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):591-8. PubMed ID: 12172631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of substrate degradation and oxygen consumption in waste composting processes.
    Lin YP; Huang GH; Lu HW; He L
    Waste Manag; 2008; 28(8):1375-85. PubMed ID: 18035530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of composting process of different organic waste at pilot scale: Biodegradability and odor emissions.
    Gutiérrez MC; Siles JA; Diz J; Chica AF; Martín MA
    Waste Manag; 2017 Jan; 59():48-58. PubMed ID: 27720580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modelling of the composting process: a review.
    Mason IG
    Waste Manag; 2006; 26(1):3-21. PubMed ID: 15927459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling organic micro pollutant degradation kinetics during sewage sludge composting.
    Sadef Y; Poulsen TG; Bester K
    Waste Manag; 2014 Nov; 34(11):2007-13. PubMed ID: 25081851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting.
    Huang DL; Zeng GM; Feng CL; Hu S; Lai C; Zhao MH; Su FF; Tang L; Liu HL
    Bioresour Technol; 2010 Jun; 101(11):4062-7. PubMed ID: 20122824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.
    Wang Y; Pang L; Liu X; Wang Y; Zhou K; Luo F
    Bioresour Technol; 2016 Apr; 206():164-172. PubMed ID: 26871299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wheat straw: An inefficient substrate for rapid natural lignocellulosic composting.
    Zhang L; Jia Y; Zhang X; Feng X; Wu J; Wang L; Chen G
    Bioresour Technol; 2016 Jun; 209():402-6. PubMed ID: 26980627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical changes and GHG emissions during composting of lignocellulosic residues with different N-rich by-products.
    Cayuela ML; Sánchez-Monedero MA; Roig A; Sinicco T; Mondini C
    Chemosphere; 2012 Jun; 88(2):196-203. PubMed ID: 22464856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical analysis of the kinetic performance of laboratory- and full-scale composting systems.
    Baptista M; Silveira A; Antunes F
    Waste Manag Res; 2012 Jul; 30(7):700-7. PubMed ID: 22452956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel kinetic modeling method for the stabilization phase of the composting process for biodegradation of solid wastes.
    Ebrahimzadeh R; Ghazanfari Moghaddam A; Sarcheshmehpour M; Mortezapour H
    Waste Manag Res; 2017 Dec; 35(12):1226-1236. PubMed ID: 29113577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clarifying configurations of reaction rate constant for first-order and Monod-type kinetics: A comparative manner and a pursuit of parametric definition.
    Wang Y; Qin C; Witarsa F
    Waste Manag; 2018 Jul; 77():22-29. PubMed ID: 30008411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the efficiency of urban waste biocomposting by analytical pyrolysis (Py-GC/MS).
    González-Vila FJ; González-Pérez JA; Akdi K; Gómis MD; Pérez-Barrera F; Verdejo T
    Bioresour Technol; 2009 Feb; 100(3):1304-9. PubMed ID: 18922690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic analysis of solid waste composting at optimal conditions.
    Komilis DP
    Waste Manag; 2006; 26(1):82-91. PubMed ID: 16287600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation kinetics of aromatic VOCs polluted wastewater by functional bacteria at laboratory scale.
    Lv Y; Wang L; Liu X; Chen B; Zhang M
    Sci Rep; 2022 Nov; 12(1):19053. PubMed ID: 36351963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composting-Like Conditions Are More Efficient for Enrichment and Diversity of Organisms Containing Cellulase-Encoding Genes than Submerged Cultures.
    Heiss-Blanquet S; Fayolle-Guichard F; Lombard V; Hébert A; Coutinho PM; Groppi A; Barre A; Henrissat B
    PLoS One; 2016; 11(12):e0167216. PubMed ID: 27936240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.