These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27595704)

  • 21. Influence of aeration rate and biodegradability fractionation on composting kinetics.
    de Guardia A; Petiot C; Rogeau D
    Waste Manag; 2008; 28(1):73-84. PubMed ID: 17196812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial decomposition of post-harvest sugarcane residue.
    Boopathy R; Beary T; Templet PJ
    Bioresour Technol; 2001 Aug; 79(1):29-33. PubMed ID: 11396904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process.
    Stloukal P; Pekařová S; Kalendova A; Mattausch H; Laske S; Holzer C; Chitu L; Bodner S; Maier G; Slouf M; Koutny M
    Waste Manag; 2015 Aug; 42():31-40. PubMed ID: 25981155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical simulation of organic waste aerobic biodegradation: a new way to correlate respiration kinetics and organic matter fractionation.
    Denes J; Tremier A; Menasseri-Aubry S; Walter C; Gratteau L; Barrington S
    Waste Manag; 2015 Feb; 36():44-56. PubMed ID: 25466391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of Xhhh strain biodegradation with metal ions for pharmaceautical wastewater treatment.
    Sun SL; Wu B; Zhao DY; Zhang XX; Zhang Y; Li WX; Cheng SP
    J Environ Biol; 2009 Sep; 30(5 Suppl):877-82. PubMed ID: 20143722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model of the sewage sludge-straw composting process integrating different heat generation capacities of mesophilic and thermophilic microorganisms.
    Białobrzewski I; Mikš-Krajnik M; Dach J; Markowski M; Czekała W; Głuchowska K
    Waste Manag; 2015 Sep; 43():72-83. PubMed ID: 26087644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Composting in small laboratory pilots: performance and reproducibility.
    Lashermes G; Barriuso E; Le Villio-Poitrenaud M; Houot S
    Waste Manag; 2012 Feb; 32(2):271-7. PubMed ID: 21982279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An integrated biochemical and physical model for the composting process.
    Sole-Mauri F; Illa J; Magrí A; Prenafeta-Boldú FX; Flotats X
    Bioresour Technol; 2007 Dec; 98(17):3278-93. PubMed ID: 16949816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources.
    Resat H; Bailey V; McCue LA; Konopka A
    Microb Ecol; 2012 May; 63(4):883-97. PubMed ID: 22193925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of inoculation in composting processes: modifications in lignocellulosic fraction.
    Vargas-García MC; Suárez-Estrella F; López MJ; Moreno J
    Waste Manag; 2007; 27(9):1099-107. PubMed ID: 16996728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Application of biosurfactant in composting of agricultural waste].
    Dai F; Zeng GM; Yuan XZ; Wu XH; Shi JG
    Huan Jing Ke Xue; 2005 Jul; 26(4):181-5. PubMed ID: 16212193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of locally available structural material as co-substrate for organic waste composting in Tamil Nadu, India.
    Springer C; Heldt N
    Waste Manag Res; 2016 Jun; 34(6):584-92. PubMed ID: 27126983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal degradations of wood biofuels, coals and hydrolysis lignin from the Russian Federation: Experiments and modeling.
    Popova E; Chernov A; Maryandyshev P; Brillard A; Kehrli D; Trouvé G; Lyubov V; Brilhac JF
    Bioresour Technol; 2016 Oct; 218():1046-54. PubMed ID: 27455128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of aeration rate and kinetics of composting some agricultural wastes.
    Kulcu R; Yaldiz O
    Bioresour Technol; 2004 May; 93(1):49-57. PubMed ID: 14987720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerobic composting of waste activated sludge: kinetic analysis for microbiological reaction and oxygen consumption.
    Yamada Y; Kawase Y
    Waste Manag; 2006; 26(1):49-61. PubMed ID: 15978796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of composting process on the dissipation of extractable sulfonamides in swine manure.
    Liu B; Li Y; Zhang X; Feng C; Gao M; Shen Q
    Bioresour Technol; 2015 Jan; 175():284-90. PubMed ID: 25459834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor.
    Nopharatana A; Pullammanappallil PC; Clarke WP
    Waste Manag; 2007; 27(5):595-603. PubMed ID: 16797956
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of water movement model as a module of moisture content simulation in static pile composting.
    Seng B; Kaneko H; Hirayama K; Katayama-Hirayama K
    Environ Technol; 2012; 33(13-15):1685-94. PubMed ID: 22988629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A respirometric method for characterising the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be co-composted.
    Tremier A; De Guardia A; Massiani C; Paul E; Martel JL
    Bioresour Technol; 2005 Jan; 96(2):169-80. PubMed ID: 15381213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Application of high-efficient cellulose utilization microorganisms in co-composting of vegetable wastes and flower stalk].
    Huang DY; Lu WJ; Wang HT; Zhou HY; Wang ZC
    Huan Jing Ke Xue; 2004 Mar; 25(2):145-9. PubMed ID: 15202253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.