BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27595738)

  • 1. Three residues in the luminal domain of triadin impact on Trisk 95 activation of skeletal muscle ryanodine receptors.
    Wium E; Dulhunty AF; Beard NA
    Pflugers Arch; 2016 Nov; 468(11-12):1985-1994. PubMed ID: 27595738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling.
    Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT
    J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A skeletal muscle ryanodine receptor interaction domain in triadin.
    Wium E; Dulhunty AF; Beard NA
    PLoS One; 2012; 7(8):e43817. PubMed ID: 22937102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium.
    Györke I; Hester N; Jones LR; Györke S
    Biophys J; 2004 Apr; 86(4):2121-8. PubMed ID: 15041652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin.
    Wei L; Gallant EM; Dulhunty AF; Beard NA
    Int J Biochem Cell Biol; 2009 Nov; 41(11):2214-24. PubMed ID: 19398037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin.
    Lee JM; Rho SH; Shin DW; Cho C; Park WJ; Eom SH; Ma J; Kim DH
    J Biol Chem; 2004 Feb; 279(8):6994-7000. PubMed ID: 14638677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of atypical Ca2+ transients in triadin-binding deficient-RYR1 mutants.
    Lee EH; Song DW; Lee JM; Meissner G; Allen PD; Kim DH
    Biochem Biophys Res Commun; 2006 Dec; 351(4):909-14. PubMed ID: 17092484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caveolin 3 is associated with the calcium release complex and is modified via in vivo triadin modification.
    Vassilopoulos S; Oddoux S; Groh S; Cacheux M; Fauré J; Brocard J; Campbell KP; Marty I
    Biochemistry; 2010 Jul; 49(29):6130-5. PubMed ID: 20565104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane.
    Zhang L; Kelley J; Schmeisser G; Kobayashi YM; Jones LR
    J Biol Chem; 1997 Sep; 272(37):23389-97. PubMed ID: 9287354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of skeletal muscle calsequestrin enhances its Ca2+ binding capacity and promotes its association with junctin.
    Beard NA; Wei L; Cheung SN; Kimura T; Varsányi M; Dulhunty AF
    Cell Calcium; 2008 Oct; 44(4):363-73. PubMed ID: 19230141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The asp-rich region at the carboxyl-terminus of calsequestrin binds to Ca(2+) and interacts with triadin.
    Shin DW; Ma J; Kim DH
    FEBS Lett; 2000 Dec; 486(2):178-82. PubMed ID: 11113462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ablation of skeletal muscle triadin impairs FKBP12/RyR1 channel interactions essential for maintaining resting cytoplasmic Ca2+.
    Eltit JM; Feng W; Lopez JR; Padilla IT; Pessah IN; Molinski TF; Fruen BR; Allen PD; Perez CF
    J Biol Chem; 2010 Dec; 285(49):38453-62. PubMed ID: 20926377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-terminal residues of skeletal muscle calsequestrin are essential for calcium binding and for skeletal ryanodine receptor inhibition.
    Beard NA; Dulhunty AF
    Skelet Muscle; 2015; 5():6. PubMed ID: 25861445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered stored calcium release in skeletal myotubes deficient of triadin and junctin.
    Wang Y; Li X; Duan H; Fulton TR; Eu JP; Meissner G
    Cell Calcium; 2009 Jan; 45(1):29-37. PubMed ID: 18620751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triadin (Trisk 95) overexpression blocks excitation-contraction coupling in rat skeletal myotubes.
    Rezgui SS; Vassilopoulos S; Brocard J; Platel JC; Bouron A; Arnoult C; Oddoux S; Garcia L; De Waard M; Marty I
    J Biol Chem; 2005 Nov; 280(47):39302-8. PubMed ID: 16176928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cytoplasmic loops between domains II and III and domains III and IV in the skeletal muscle dihydropyridine receptor bind to a contiguous site in the skeletal muscle ryanodine receptor.
    Leong P; MacLennan DH
    J Biol Chem; 1998 Nov; 273(45):29958-64. PubMed ID: 9792715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular interaction between ryanodine receptor and glycoprotein triadin involves redox cycling of functionally important hyperreactive sulfhydryls.
    Liu G; Pessah IN
    J Biol Chem; 1994 Dec; 269(52):33028-34. PubMed ID: 7806531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human skeletal muscle triadin: gene organization and cloning of the major isoform, Trisk 51.
    Thevenon D; Smida-Rezgui S; Chevessier F; Groh S; Henry-Berger J; Beatriz Romero N; Villaz M; DeWaard M; Marty I
    Biochem Biophys Res Commun; 2003 Apr; 303(2):669-75. PubMed ID: 12659871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.