These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27595770)

  • 1. Facile Synthesis of Three-Dimensional Pt-TiO2 Nano-networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane.
    Khalily MA; Eren H; Akbayrak S; Susapto HH; Biyikli N; Özkar S; Guler MO
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12257-61. PubMed ID: 27595770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic Layer Deposition of Ruthenium Nanoparticles on Electrospun Carbon Nanofibers: A Highly Efficient Nanocatalyst for the Hydrolytic Dehydrogenation of Methylamine Borane.
    Khalily MA; Yurderi M; Haider A; Bulut A; Patil B; Zahmakiran M; Uyar T
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26162-26169. PubMed ID: 29989394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition.
    Gao Z; Qin Y
    Acc Chem Res; 2017 Sep; 50(9):2309-2316. PubMed ID: 28787132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an ALD-Pt@SWCNT/Graphene 3D Nanohybrid Architecture for Hydrogen Sensing.
    Liu B; Alamri M; Walsh M; Doolin JL; Berrie CL; Wu JZ
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53115-53124. PubMed ID: 33200602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode.
    Li Z; Yao C; Wang F; Cai Z; Wang X
    Nanotechnology; 2014 Dec; 25(50):504005. PubMed ID: 25426973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis.
    DeSario PA; Pietron JJ; Dunkelberger A; Brintlinger TH; Baturina O; Stroud RM; Owrutsky JC; Rolison DR
    Langmuir; 2017 Sep; 33(37):9444-9454. PubMed ID: 28723093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage.
    Xi P; Chen F; Xie G; Ma C; Liu H; Shao C; Wang J; Xu Z; Xu X; Zeng Z
    Nanoscale; 2012 Sep; 4(18):5597-601. PubMed ID: 22732933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spaced TiO
    Ozkan S; Yoo J; Nguyen NT; Mohajernia S; Zazpe R; Prikryl J; Macak JM; Schmuki P
    ChemistryOpen; 2018 Oct; 7(10):797-802. PubMed ID: 30302303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane.
    Manna J; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2017 Dec; 508():359-368. PubMed ID: 28843925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.
    Korhonen JT; Hiekkataipale P; Malm J; Karppinen M; Ikkala O; Ras RH
    ACS Nano; 2011 Mar; 5(3):1967-74. PubMed ID: 21361349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous PtCo/Co
    Zhou Q; Xu C
    J Colloid Interface Sci; 2017 Dec; 508():542-550. PubMed ID: 28869911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane.
    Tonbul Y; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2018 Mar; 513():287-294. PubMed ID: 29156236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetically Isolable Pt
    Akbayrak S; Özkar S
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34341-34348. PubMed ID: 34255473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Support Synergistic Catalysis in Pt/MoO
    Zhou S; Yang Y; Yin P; Ren Z; Wang L; Wei M
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5275-5286. PubMed ID: 35050564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ex situ synthesis and characterization of a polymer-carbon nanotube-based hybrid nanocatalyst with one of the highest catalytic activities and stabilities for the hydrolytic dehydrogenation of hydrazine-borane at room temperature conditions.
    Demirkan B; Kuyuldar E; Karataş Y; Gülcan M; Sen F
    J Colloid Interface Sci; 2019 Sep; 552():432-438. PubMed ID: 31152963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane.
    Tonbul Y; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2019 Oct; 553():581-587. PubMed ID: 31238228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palladium nanoparticles supported on cobalt(II,III) oxide nanocatalyst: High reusability and outstanding catalytic activity in hydrolytic dehydrogenation of ammonia borane.
    Akbayrak S; Özkar S
    J Colloid Interface Sci; 2022 Nov; 626():752-758. PubMed ID: 35820210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and stabilization of supported metal catalysts by atomic layer deposition.
    Lu J; Elam JW; Stair PC
    Acc Chem Res; 2013 Aug; 46(8):1806-15. PubMed ID: 23480735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Pt-loaded NiCo nanochains with superior catalytic dehydrogenation activity.
    Wen M; Wu Q; Peng J; Wu Q; Wang C
    J Colloid Interface Sci; 2014 Feb; 416():220-6. PubMed ID: 24370425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Process for Topographically Selective Deposition on 3D Nanostructures by Ion Implantation.
    Kim WH; Minaye Hashemi FS; Mackus AJ; Singh J; Kim Y; Bobb-Semple D; Fan Y; Kaufman-Osborn T; Godet L; Bent SF
    ACS Nano; 2016 Apr; 10(4):4451-8. PubMed ID: 26950397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.