These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 27596441)
21. Ionomic and Metabolomic Analyses Reveal Different Response Mechanisms to Saline-Alkali Stress Between Chen Q; Jin Y; Zhang Z; Cao M; Wei G; Guo X; Zhang J; Lu X; Tang Z Front Plant Sci; 2021; 12():774284. PubMed ID: 34917108 [TBL] [Abstract][Full Text] [Related]
22. Genome-wide DNA methylation analysis and biochemical responses provide insights into the initial domestication of halophyte Puccinellia tenuiflora. Li L; Lu H; Wang H; Bhanbhro N; Yang C Plant Cell Rep; 2021 Jul; 40(7):1181-1197. PubMed ID: 33945005 [TBL] [Abstract][Full Text] [Related]
23. Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis. Sharmin SA; Alam I; Kim KH; Kim YG; Kim PJ; Bahk JD; Lee BH Plant Sci; 2012 May; 187():113-26. PubMed ID: 22404839 [TBL] [Abstract][Full Text] [Related]
24. Metabolomics Analysis Reveals the Alkali Tolerance Mechanism in Yang C; Zhao W; Wang Y; Zhang L; Huang S; Lin J Microorganisms; 2020 Feb; 8(3):. PubMed ID: 32110985 [TBL] [Abstract][Full Text] [Related]
25. Proteomic analysis of cucumber seedling roots subjected to salt stress. Du CX; Fan HF; Guo SR; Tezuka T; Li J Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043 [TBL] [Abstract][Full Text] [Related]
26. Comparative Genomics and Transcriptomics of the Extreme Halophyte Guo R; Zhao L; Zhang K; Lu H; Bhanbhro N; Yang C Front Plant Sci; 2021; 12():649001. PubMed ID: 33968105 [TBL] [Abstract][Full Text] [Related]
27. Proteomic analysis reveals growth inhibition of soybean roots by manganese toxicity is associated with alteration of cell wall structure and lignification. Chen Z; Yan W; Sun L; Tian J; Liao H J Proteomics; 2016 Jun; 143():151-160. PubMed ID: 27045940 [TBL] [Abstract][Full Text] [Related]
28. Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity. Jiang HX; Yang LT; Qi YP; Lu YB; Huang ZR; Chen LS BMC Genomics; 2015 Nov; 16():949. PubMed ID: 26573913 [TBL] [Abstract][Full Text] [Related]
29. Physiological and TMT-based proteomic analysis of oat early seedlings in response to alkali stress. Zhao Z; Liu J; Jia R; Bao S; Haixia ; Chen X J Proteomics; 2019 Feb; 193():10-26. PubMed ID: 30576833 [TBL] [Abstract][Full Text] [Related]
30. Hg-responsive proteins identified in wheat seedlings using iTRAQ analysis and the role of ABA in Hg stress. Kang G; Li G; Wang L; Wei L; Yang Y; Wang P; Yang Y; Wang Y; Feng W; Wang C; Guo T J Proteome Res; 2015 Jan; 14(1):249-67. PubMed ID: 25330896 [TBL] [Abstract][Full Text] [Related]
31. Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+. Peng YH; Zhu YF; Mao YQ; Wang SM; Su WA; Tang ZC J Exp Bot; 2004 Apr; 55(398):939-49. PubMed ID: 15020645 [TBL] [Abstract][Full Text] [Related]
32. A Chloroplast-Localized Rubredoxin Family Protein Gene from Puccinellia tenuiflora (PutRUB) Increases NaCl and NaHCO₃ Tolerance by Decreasing H₂O₂ Accumulation. Li Y; Liu P; Takano T; Liu S Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27248998 [TBL] [Abstract][Full Text] [Related]
33. Proteomic analysis of salt-responsive proteins in oat roots (Avena sativa L.). Bai J; Liu J; Jiao W; Sa R; Zhang N; Jia R J Sci Food Agric; 2016 Aug; 96(11):3867-75. PubMed ID: 26689600 [TBL] [Abstract][Full Text] [Related]
34. Identification of expressed sequence tags in an alkali grass (Puccinellia tenuiflora) cDNA library. Wang Y; Chu Y; Liu G; Wang MH; Jiang J; Hou Y; Qu G; Yang C J Plant Physiol; 2007 Jan; 164(1):78-89. PubMed ID: 16545489 [TBL] [Abstract][Full Text] [Related]
35. Comparative proteomic analysis revealing the complex network associated with waterlogging stress in maize (Zea mays L.) seedling root cells. Yu F; Han X; Geng C; Zhao Y; Zhang Z; Qiu F Proteomics; 2015 Jan; 15(1):135-47. PubMed ID: 25316036 [TBL] [Abstract][Full Text] [Related]
36. iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress. Jiang Q; Li X; Niu F; Sun X; Hu Z; Zhang H Proteomics; 2017 Apr; 17(8):. PubMed ID: 28191739 [TBL] [Abstract][Full Text] [Related]
37. Genome of extreme halophyte Puccinellia tenuiflora. Guo R; Zhao L; Zhang K; Gao D; Yang C BMC Genomics; 2020 Apr; 21(1):311. PubMed ID: 32306894 [TBL] [Abstract][Full Text] [Related]
38. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14. Yang L; Zhang Y; Zhu N; Koh J; Ma C; Pan Y; Yu B; Chen S; Li H J Proteome Res; 2013 Nov; 12(11):4931-50. PubMed ID: 23799291 [TBL] [Abstract][Full Text] [Related]
39. Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Liu S; Cheng Y; Zhang X; Guan Q; Nishiuchi S; Hase K; Takano T Plant Mol Biol; 2007 May; 64(1-2):49-58. PubMed ID: 17245561 [TBL] [Abstract][Full Text] [Related]
40. Proteomic profiling sheds light on alkali tolerance of common wheat (Triticum aestivum L.). Han L; Xiao C; Xiao B; Wang M; Liu J; Bhanbhro N; Khan A; Wang H; Wang H; Yang C Plant Physiol Biochem; 2019 May; 138():58-64. PubMed ID: 30852238 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]