BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27596531)

  • 21. Epitope determination of immunogenic proteins of Neisseria gonorrhoeae.
    Connor DO; Danckert L; Hoppe S; Bier FF; von Nickisch-Rosenegk M
    PLoS One; 2017; 12(7):e0180962. PubMed ID: 28723967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer-aided genomic data analysis of drug-resistant
    Qasim A; Jaan S; Wara TU; Shehroz M; Nishan U; Shams S; Shah M; Ojha SC
    Front Cell Infect Microbiol; 2023; 13():1017315. PubMed ID: 37033487
    [No Abstract]   [Full Text] [Related]  

  • 23. Oral Immunization of Rabbits with S. enterica Typhimurium Expressing Neisseria gonorrhoeae Filamentous Phage Φ6 Induces Bactericidal Antibodies Against N. gonorrhoeae.
    Piekarowicz A; Kłyż A; Majchrzak M; Stein DC
    Sci Rep; 2016 Mar; 6():22549. PubMed ID: 26939573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein.
    Zheng J; Lin X; Wang X; Zheng L; Lan S; Jin S; Ou Z; Wu J
    Viruses; 2017 May; 9(5):. PubMed ID: 28509875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches.
    Nezafat N; Eslami M; Negahdaripour M; Rahbar MR; Ghasemi Y
    Mol Biosyst; 2017 Mar; 13(4):699-713. PubMed ID: 28194462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse vaccinology approaches to introduce promising immunogenic and drug targets against antibiotic-resistant Neisseria gonorrhoeae: Thinking outside the box in current prevention and treatment.
    Noori Goodarzi N; Ajdary S; Yekaninejad MS; Fereshteh S; Pourmand MR; Badmasti F
    Infect Genet Evol; 2023 Aug; 112():105449. PubMed ID: 37225067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of a peptide vaccine candidate mimicking an oligosaccharide epitope of Neisseria gonorrhoeae and resultant immune responses and function.
    Ngampasutadol J; Rice PA; Walsh MT; Gulati S
    Vaccine; 2006 Jan; 24(2):157-70. PubMed ID: 16125281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The frontiers of addressing antibiotic resistance in Neisseria gonorrhoeae.
    Rubin DHF; Ross JDC; Grad YH
    Transl Res; 2020 Jun; 220():122-137. PubMed ID: 32119845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting Lipooligosaccharide (LOS) for a Gonococcal Vaccine.
    Gulati S; Shaughnessy J; Ram S; Rice PA
    Front Immunol; 2019; 10():321. PubMed ID: 30873172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sexually Transmitted
    Jefferson A; Smith A; Fasinu PS; Thompson DK
    Medicines (Basel); 2021 Feb; 8(2):. PubMed ID: 33562607
    [No Abstract]   [Full Text] [Related]  

  • 31. Identification of potential therapeutic targets in Neisseria gonorrhoeae by an in-silico approach.
    Tanwer P; Kolora SRR; Babbar A; Saluja D; Chaudhry U
    J Theor Biol; 2020 Apr; 490():110172. PubMed ID: 31972174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel multi-epitope peptide vaccine against cancer: an in silico approach.
    Nezafat N; Ghasemi Y; Javadi G; Khoshnoud MJ; Omidinia E
    J Theor Biol; 2014 May; 349():121-34. PubMed ID: 24512916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human experimentation with Neisseria gonorrhoeae: rationale, methods, and implications for the biology of infection and vaccine development.
    Cohen MS; Cannon JG; Jerse AE; Charniga LM; Isbey SF; Whicker LG
    J Infect Dis; 1994 Mar; 169(3):532-7. PubMed ID: 8158024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In silico epitope analysis of unique and membrane associated proteins from Mycobacterium avium subsp. paratuberculosis for immunogenicity and vaccine evaluation.
    Carlos P; Roupie V; Holbert S; Ascencio F; Huygen K; Gomez-Anduro G; Branger M; Reyes-Becerril M; Angulo C
    J Theor Biol; 2015 Nov; 384():1-9. PubMed ID: 26279134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches.
    Saadi M; Karkhah A; Nouri HR
    Infect Genet Evol; 2017 Jul; 51():227-234. PubMed ID: 28411163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preliminary studies on the development of a gonococcal vaccine.
    Greenberg I; Diena BB; Kenny CP; Znamirowski R
    Bull World Health Organ; 1971; 45(4):531-5. PubMed ID: 5004708
    [No Abstract]   [Full Text] [Related]  

  • 37. Computational screening and characterization of putative vaccine candidates of Plasmodium vivax.
    Nanda Kumar Y; Jeyakodi G; Gunasekaran K; Jambulingam P
    J Biomol Struct Dyn; 2016 Aug; 34(8):1736-50. PubMed ID: 26338678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In silico identification of candidate drug and vaccine targets from various pathways in Neisseria gonorrhoeae.
    Barh D; Kumar A
    In Silico Biol; 2009; 9(4):225-31. PubMed ID: 20109152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The therapeutic efficacy of a gonococcal vaccine].
    Andreeva ZM; Bednova VN; Shevchenko NM; Malyshev AM; Danilenko TI
    Vestn Dermatol Venerol; 1989; (11):53-5. PubMed ID: 2515676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vaccines for gonorrhea: where are we on the curve?
    Blake MS; Wetzler LM
    Trends Microbiol; 1995 Dec; 3(12):469-74. PubMed ID: 8800838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.