These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 27596597)

  • 21. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DRdriver: identifying drug resistance driver genes using individual-specific gene regulatory network.
    Huang YE; Zhou S; Liu H; Zhou X; Yuan M; Hou F; Chen S; Chen J; Wang L; Jiang W
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constructing cancer patient-specific and group-specific gene networks with multi-omics data.
    Lee W; Huang DS; Han K
    BMC Med Genomics; 2020 Aug; 13(Suppl 6):81. PubMed ID: 32854705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cancer-mutation network and the number and specificity of driver mutations.
    Iranzo J; Martincorena I; Koonin EV
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E6010-E6019. PubMed ID: 29895694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Network controllability-based algorithm to target personalized driver genes for discovering combinatorial drugs of individual patients.
    Guo WF; Zhang SW; Feng YH; Liang J; Zeng T; Chen L
    Nucleic Acids Res; 2021 Apr; 49(7):e37. PubMed ID: 33434272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network control principles for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Akutsu T; Chen L
    Brief Bioinform; 2020 Sep; 21(5):1641-1662. PubMed ID: 31711128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Whole transcriptomic network analysis using Co-expression Differential Network Analysis (CoDiNA).
    Morselli Gysi D; de Miranda Fragoso T; Zebardast F; Bertoli W; Busskamp V; Almaas E; Nowick K
    PLoS One; 2020; 15(10):e0240523. PubMed ID: 33057419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DeltaNeTS+: elucidating the mechanism of drugs and diseases using gene expression and transcriptional regulatory networks.
    Noh H; Hua Z; Chrysinas P; Shoemaker JE; Gunawan R
    BMC Bioinformatics; 2021 Mar; 22(1):108. PubMed ID: 33663384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-specific gene association network construction from single-cell RNA sequence.
    Azim R; Wang S
    Cell Cycle; 2021 Nov; 20(21):2248-2263. PubMed ID: 34530677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Driver gene detection through Bayesian network integration of mutation and expression profiles.
    Chen Z; Lu Y; Cao B; Zhang W; Edwards A; Zhang K
    Bioinformatics; 2022 May; 38(10):2781-2790. PubMed ID: 35561191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma.
    Gu Y; Wang H; Qin Y; Zhang Y; Zhao W; Qi L; Zhang Y; Wang C; Guo Z
    Mol Biosyst; 2013 Mar; 9(3):467-77. PubMed ID: 23344900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating Protein-Protein Interaction Networks and Somatic Mutation Data to Detect Driver Modules in Pan-Cancer.
    Wu H; Chen Z; Wu Y; Zhang H; Liu Q
    Interdiscip Sci; 2022 Mar; 14(1):151-167. PubMed ID: 34491536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inferring microRNA and transcription factor regulatory networks in heterogeneous data.
    Le TD; Liu L; Liu B; Tsykin A; Goodall GJ; Satou K; Li J
    BMC Bioinformatics; 2013 Mar; 14():92. PubMed ID: 23497388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Node-based learning of differential networks from multi-platform gene expression data.
    Ou-Yang L; Zhang XF; Wu M; Li XL
    Methods; 2017 Oct; 129():41-49. PubMed ID: 28579401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles.
    Wang L; Li F; Sheng J; Wong ST
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes.
    Liu C; Zhao J; Lu W; Dai Y; Hockings J; Zhou Y; Nussinov R; Eng C; Cheng F
    PLoS Comput Biol; 2020 Feb; 16(2):e1007701. PubMed ID: 32101536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular tests and target therapies in oncology: recommendations from the Italian workshop.
    Pinto C; Biffoni M; Popoli P; Marchetti A; Marchetti P; Martini N; Normanno N
    Future Oncol; 2021 Sep; 17(26):3529-3539. PubMed ID: 34254524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A multiple network-based bioinformatics pipeline for the study of molecular mechanisms in oncological diseases for personalized medicine.
    Dotolo S; Marabotti A; Rachiglio AM; Esposito Abate R; Benedetto M; Ciardiello F; De Luca A; Normanno N; Facchiano A; Tagliaferri R
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34050359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.