These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27597167)

  • 1. Evaluating the accuracy of protein design using native secondary sub-structures.
    Movahedi M; Zare-Mirakabad F; Arab SS
    BMC Bioinformatics; 2016 Sep; 17(1):353. PubMed ID: 27597167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frnakenstein: multiple target inverse RNA folding.
    Lyngsø RB; Anderson JW; Sizikova E; Badugu A; Hyland T; Hein J
    BMC Bioinformatics; 2012 Oct; 13():260. PubMed ID: 23043260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scatter search algorithm for protein structure prediction.
    Mansour N; Kehyayan C; Khachfe H
    Int J Bioinform Res Appl; 2009; 5(5):501-15. PubMed ID: 19778866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Evolution-Based Approach to De Novo Protein Design.
    Brender JR; Shultis D; Khattak NA; Zhang Y
    Methods Mol Biol; 2017; 1529():243-264. PubMed ID: 27914055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognizing the fold of a protein structure.
    Harrison A; Pearl F; Sillitoe I; Slidel T; Mott R; Thornton J; Orengo C
    Bioinformatics; 2003 Sep; 19(14):1748-59. PubMed ID: 14512345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo and inverse folding predictions of protein structure and dynamics.
    Godzik A; Kolinski A; Skolnick J
    J Comput Aided Mol Des; 1993 Aug; 7(4):397-438. PubMed ID: 8229093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary solution for the RNA design problem.
    Esmaili-Taheri A; Ganjtabesh M; Mohammad-Noori M
    Bioinformatics; 2014 May; 30(9):1250-8. PubMed ID: 24407223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid genetic-neural system for predicting protein secondary structure.
    Armano G; Mancosu G; Milanesi L; Orro A; Saba M; Vargiu E
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S3. PubMed ID: 16351752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D protein structure prediction with genetic tabu search algorithm.
    Zhang X; Wang T; Luo H; Yang JY; Deng Y; Tang J; Yang MQ
    BMC Syst Biol; 2010 May; 4 Suppl 1(Suppl 1):S6. PubMed ID: 20522256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction of protein torsion angles using evolutionary signatures and recurrent neural network.
    Xu YC; ShangGuan TJ; Ding XM; Cheung NJ
    Sci Rep; 2021 Oct; 11(1):21033. PubMed ID: 34702851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicking the folding pathway to improve homology-free protein structure prediction.
    DeBartolo J; Colubri A; Jha AK; Fitzgerald JE; Freed KF; Sosnick TR
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3734-9. PubMed ID: 19237560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved hybrid optimization algorithm for 3D protein structure prediction.
    Zhou C; Hou C; Wei X; Zhang Q
    J Mol Model; 2014 Jul; 20(7):2289. PubMed ID: 25069136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Template-based C8-SCORPION: a protein 8-state secondary structure prediction method using structural information and context-based features.
    Yaseen A; Li Y
    BMC Bioinformatics; 2014; 15 Suppl 8(Suppl 8):S3. PubMed ID: 25080939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining evolutionary and structural information for local protein structure prediction.
    Pei J; Grishin NV
    Proteins; 2004 Sep; 56(4):782-94. PubMed ID: 15281130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures.
    Ouzounis C; Sander C; Scharf M; Schneider R
    J Mol Biol; 1993 Aug; 232(3):805-25. PubMed ID: 8355272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In search of the ideal protein sequence.
    Godzik A
    Protein Eng; 1995 May; 8(5):409-16. PubMed ID: 8532661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparative Study on Single and Multiple Point Crossovers in a Genetic Algorithm for Coarse Protein Modeling.
    Dubey SPN; Kini NG; Balaji S; Kumar MS
    Crit Rev Biomed Eng; 2018; 46(2):163-171. PubMed ID: 30055532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved recognition of native-like protein structures using a family of designed sequences.
    Koehl P; Levitt M
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):691-6. PubMed ID: 11782533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved stochastic fractal search algorithm for 3D protein structure prediction.
    Zhou C; Sun C; Wang B; Wang X
    J Mol Model; 2018 May; 24(6):125. PubMed ID: 29725774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.