BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27597410)

  • 1. Synthesis and evaluation against Leishmania amazonensis of novel pyrazolo[3,4-d]pyridazinone-N-acylhydrazone-(bi)thiophene hybrids.
    Jacomini AP; Silva MJV; Silva RGM; Gonçalves DS; Volpato H; Basso EA; Paula FR; Nakamura CV; Sarragiotto MH; Rosa FA
    Eur J Med Chem; 2016 Nov; 124():340-349. PubMed ID: 27597410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro.
    Rodrigues KA; Dias CN; Néris PL; Rocha Jda C; Scotti MT; Scotti L; Mascarenhas SR; Veras RC; de Medeiros IA; Keesen Tde S; de Oliveira TB; de Lima Mdo C; Balliano TL; de Aquino TM; de Moura RO; Mendonça Junior FJ; de Oliveira MR
    Eur J Med Chem; 2015 Dec; 106():1-14. PubMed ID: 26513640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New thiophene-acridine compounds: Synthesis, antileishmanial activity, DNA binding, chemometric, and molecular docking studies.
    de Lima Serafim V; Félix MB; Frade Silva DK; Rodrigues KADF; Andrade PN; de Almeida SMV; de Albuquerque Dos Santos S; de Oliveira JF; de Lima MDCA; Mendonça-Junior FJB; Scotti MT; de Oliveira MR; de Moura RO
    Chem Biol Drug Des; 2018 Jun; 91(6):1141-1155. PubMed ID: 29415325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antileishmanial activity of new thiophene-indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies.
    Félix MB; de Souza ER; de Lima MDCA; Frade DKG; Serafim VL; Rodrigues KADF; Néris PLDN; Ribeiro FF; Scotti L; Scotti MT; de Aquino TM; Mendonça Junior FJB; de Oliveira MR
    Bioorg Med Chem; 2016 Sep; 24(18):3972-3977. PubMed ID: 27515718
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Matadamas-Martínez F; Hernández-Campos A; Téllez-Valencia A; Vázquez-Raygoza A; Comparán-Alarcón S; Yépez-Mulia L; Castillo R
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31487860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis.
    da Rosa R; de Moraes MH; Zimmermann LA; Schenkel EP; Steindel M; Bernardes LSC
    Eur J Med Chem; 2017 Mar; 128():25-35. PubMed ID: 28152426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypanothione reductase activity is prominent in metacyclic promastigotes and axenic amastigotes of Leishmania amazonesis. Evaluation of its potential as a therapeutic target.
    Castro-Pinto DB; Echevarria A; Genestra MS; Cysne-Finkelstein L; Leon LL
    J Enzyme Inhib Med Chem; 2004 Feb; 19(1):57-63. PubMed ID: 15202494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae).
    Lima GS; Castro-Pinto DB; Machado GC; Maciel MA; Echevarria A
    Phytomedicine; 2015 Nov; 22(12):1133-7. PubMed ID: 26547537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-Aryl-quinazolin-4(3H)-ones as an inhibitor of leishmania folate pathway: In vitro biological evaluation, mechanism studies and molecular docking.
    Romero AH; Rodríguez N; Oviedo H
    Bioorg Chem; 2019 Mar; 83():145-153. PubMed ID: 30359795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro Assessment of Camphor Hydrazone Derivatives as an Agent Against Leishmania amazonensis.
    da Silva ET; de Andrade GF; Araújo ADS; Almeida ADC; Coimbra ES; de Souza MVN
    Acta Parasitol; 2020 Mar; 65(1):203-207. PubMed ID: 31832921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-Assisted Design of Thiophene-Indole Hybrids as Leishmanial Agents.
    Félix MB; de Araújo RSA; Barros RPC; de Simone CA; Rodrigues RRL; de Lima Nunes TA; da Franca Rodrigues KA; Junior FJBM; Muratov E; Scotti L; Scotti MT
    Curr Top Med Chem; 2020; 20(19):1704-1719. PubMed ID: 32543360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Thiophene Compounds as Potent Chemotherapies for the Treatment of Cutaneous Leishmaniasis Caused by
    Rodriguez F; Iniguez E; Pena Contreras G; Ahmed H; Costa TEMM; Skouta R; Maldonado RA
    Molecules; 2018 Jul; 23(7):. PubMed ID: 29973498
    [No Abstract]   [Full Text] [Related]  

  • 13. Novel Heteroaryl Selenocyanates and Diselenides as Potent Antileishmanial Agents.
    Baquedano Y; Alcolea V; Toro MÁ; Gutiérrez KJ; Nguewa P; Font M; Moreno E; Espuelas S; Jiménez-Ruiz A; Palop JA; Plano D; Sanmartín C
    Antimicrob Agents Chemother; 2016 Jun; 60(6):3802-12. PubMed ID: 27067328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiophene derivatives with antileishmanial activity isolated from aerial parts of Porophyllum ruderale (Jacq.) Cass.
    Takahashi HT; Novello CR; Ueda-Nakamura T; Filho BP; Palazzo de Mello JC; Nakamura CV
    Molecules; 2011 Apr; 16(5):3469-78. PubMed ID: 21522080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and molecular modelling studies of phenyl linked oxadiazole-phenylhydrazone hybrids as potent antileishmanial agents.
    Taha M; Ismail NH; Imran S; Anouar EH; Selvaraj M; Jamil W; Ali M; Kashif SM; Rahim F; Khan KM; Adenan MI
    Eur J Med Chem; 2017 Jan; 126():1021-1033. PubMed ID: 28012342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evaluation of (-)α-bisabolol as a promising agent against Leishmania amazonensis.
    Rottini MM; Amaral AC; Ferreira JL; Silva JR; Taniwaki NN; Souza Cda S; d'Escoffier LN; Almeida-Souza F; Hardoim Dde J; Gonçalves da Costa SC; Calabrese Kda S
    Exp Parasitol; 2015 Jan; 148():66-72. PubMed ID: 25448354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antileishmanial activity of quinazoline derivatives: synthesis, docking screens, molecular dynamic simulations and electrochemical studies.
    Mendoza-Martínez C; Galindo-Sevilla N; Correa-Basurto J; Ugalde-Saldivar VM; Rodríguez-Delgado RG; Hernández-Pineda J; Padierna-Mota C; Flores-Alamo M; Hernández-Luis F
    Eur J Med Chem; 2015 Mar; 92():314-31. PubMed ID: 25576738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antileishmanial activity of Melampodium divaricatum and Casearia sylvestris essential oils on Leishmania amazonensis.
    Moreira RRD; Santos AGD; Carvalho FA; Perego CH; Crevelin EJ; Crotti AEM; Cogo J; Cardoso MLC; Nakamura CV
    Rev Inst Med Trop Sao Paulo; 2019 Jul; 61():e33. PubMed ID: 31269109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro activity of synthetic tetrahydroindeno[2,1-c]quinolines on Leishmania mexicana.
    Hernández-Chinea C; Carbajo E; Sojo F; Arvelo F; Kouznetsov VV; Romero-Bohórquez AR; Romero PJ
    Parasitol Int; 2015 Dec; 64(6):479-83. PubMed ID: 26148815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro evaluation of 4-phenyl-5-(4'-X-phenyl)-1,3,4-thiadiazolium-2-phenylaminide chlorides and 3[N-4'-X-phenyl]-1,2,3-oxadiazolium-5-olate derivatives on nitric oxide synthase and arginase activities of Leishmania amazonensis.
    Soares-Bezerra RJ; Leon LL; Echevarria A; Reis CM; Gomes-Silva L; Agostinho CG; Fernandes RA; Canto-Cavalheiro MM; Genestra MS
    Exp Parasitol; 2013 Sep; 135(1):50-4. PubMed ID: 23693031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.