BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27597531)

  • 21. Disruption of the mthfd1 gene reveals a monofunctional 10-formyltetrahydrofolate synthetase in mammalian mitochondria.
    Christensen KE; Patel H; Kuzmanov U; Mejia NR; MacKenzie RE
    J Biol Chem; 2005 Mar; 280(9):7597-602. PubMed ID: 15611115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MTHFD1 gene: role in disease susceptibility and pharmacogenetics.
    Krajinovic M
    Pharmacogenomics; 2008 Jul; 9(7):829-32. PubMed ID: 18597647
    [No Abstract]   [Full Text] [Related]  

  • 23. Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis.
    Field MS; Kamynina E; Watkins D; Rosenblatt DS; Stover PJ
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):400-5. PubMed ID: 25548164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Susceptibility to intestinal tumorigenesis in folate-deficient mice may be influenced by variation in one-carbon metabolism and DNA repair.
    Knock E; Deng L; Krupenko N; Mohan RD; Wu Q; Leclerc D; Gupta S; Elmore CL; Kruger W; Tini M; Rozen R
    J Nutr Biochem; 2011 Nov; 22(11):1022-9. PubMed ID: 21193302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MTHFR and MTHFD1 gene polymorphisms are not associated with pseudoexfoliation syndrome in South Indian population.
    Gopalakrishnan P; Haripriya A; Sundaresan P
    Int Ophthalmol; 2018 Apr; 38(2):599-606. PubMed ID: 28299500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization and review of MTHFD1 deficiency: four new patients, cellular delineation and response to folic and folinic acid treatment.
    Burda P; Kuster A; Hjalmarson O; Suormala T; Bürer C; Lutz S; Roussey G; Christa L; Asin-Cayuela J; Kollberg G; Andersson BA; Watkins D; Rosenblatt DS; Fowler B; Holme E; Froese DS; Baumgartner MR
    J Inherit Metab Dis; 2015 Sep; 38(5):863-72. PubMed ID: 25633902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polymorphisms in the one-carbon metabolic pathway, plasma folate levels and colorectal cancer in a prospective study.
    Chen J; Kyte C; Valcin M; Chan W; Wetmur JG; Selhub J; Hunter DJ; Ma J
    Int J Cancer; 2004 Jul; 110(4):617-20. PubMed ID: 15122597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational analysis for the determination of deleterious nsSNPs in human MTHFD1 gene.
    Desai M; Chauhan JB
    Comput Biol Chem; 2017 Oct; 70():7-14. PubMed ID: 28734179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase and formyltetrahydrofolate synthetase from porcine liver. Isolation of a dehydrogenase-cyclohydrolase fragment from the multifunctional enzyme.
    Tan LU; Mackenzie RE
    Biochim Biophys Acta; 1977 Nov; 485(1):52-9. PubMed ID: 562190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mammalian mitochondrial methylenetetrahydrofolate dehydrogenase-cyclohydrolase derived from a trifunctional methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase.
    Patel H; Christensen KE; Mejia N; MacKenzie RE
    Arch Biochem Biophys; 2002 Jul; 403(1):145-8. PubMed ID: 12061812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Association of dietary and supplemental folate intake and polymorphisms in three FOCM pathway genes with colorectal cancer in a population-based case-control study.
    Ashmore JH; Lesko SM; Muscat JE; Gallagher CJ; Berg AS; Miller PE; Hartman TJ; Lazarus P
    Genes Chromosomes Cancer; 2013 Oct; 52(10):945-53. PubMed ID: 23893618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Common Variants in One-Carbon Metabolism Genes (
    Pawlik P; Kurzawińska G; Ożarowski M; Wolski H; Piątek K; Słopień R; Sajdak S; Olbromski P; Seremak-Mrozikiewicz A
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ghrelin administration suppresses inflammation-associated colorectal carcinogenesis in mice.
    Kawaguchi M; Kanemaru A; Fukushima T; Yamamoto K; Tanaka H; Haruyama Y; Itoh H; Matsumoto N; Kangawa K; Nakazato M; Kataoka H
    Cancer Sci; 2015 Sep; 106(9):1130-6. PubMed ID: 26094822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precision Molecular Diagnosis Defines Specific Therapy in Combined Immunodeficiency with Megaloblastic Anemia Secondary to MTHFD1 Deficiency.
    Ramakrishnan KA; Pengelly RJ; Gao Y; Morgan M; Patel SV; Davies EG; Ennis S; Faust SN; Williams AP
    J Allergy Clin Immunol Pract; 2016; 4(6):1160-1166.e10. PubMed ID: 27707659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis.
    Kamynina E; Lachenauer ER; DiRisio AC; Liebenthal RP; Field MS; Stover PJ
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):E2319-E2326. PubMed ID: 28265077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases.
    Christensen KE; Mackenzie RE
    Vitam Horm; 2008; 79():393-410. PubMed ID: 18804703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The forkhead box M1 transcription factor contributes to the development and growth of mouse colorectal cancer.
    Yoshida Y; Wang IC; Yoder HM; Davidson NO; Costa RH
    Gastroenterology; 2007 Apr; 132(4):1420-31. PubMed ID: 17408638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymorphic variants of genes encoding MTHFR, MTR, and MTHFD1 and the risk of depression in postmenopausal women in Poland.
    Słopien R; Jasniewicz K; Meczekalski B; Warenik-Szymankiewicz A; Lianeri M; Jagodziński PP
    Maturitas; 2008 Nov; 61(3):252-5. PubMed ID: 18801628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mammalian fibroblasts lacking mitochondrial NAD+-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase are glycine auxotrophs.
    Patel H; Pietro ED; MacKenzie RE
    J Biol Chem; 2003 May; 278(21):19436-41. PubMed ID: 12646567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vanillin-Ameliorated Development of Azoxymethane/Dextran Sodium Sulfate-Induced Murine Colorectal Cancer: The Involvement of Proteasome/Nuclear Factor-κB/Mitogen-Activated Protein Kinase Pathways.
    Li JM; Lee YC; Li CC; Lo HY; Chen FY; Chen YS; Hsiang CY; Ho TY
    J Agric Food Chem; 2018 Jun; 66(22):5563-5573. PubMed ID: 29790745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.