BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27597637)

  • 1. Sucrose modifies growth and physiology in axenically grown Myriophyllum spicatum with potential effects on the response to pollutants.
    Nuttens A; Gross EM
    Environ Toxicol Chem; 2017 Apr; 36(4):969-975. PubMed ID: 27597637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides?
    Nuttens A; Chatellier S; Devin S; Guignard C; Lenouvel A; Gross EM
    Aquat Toxicol; 2016 Aug; 177():355-64. PubMed ID: 27371928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response and recovery of the macrophytes Elodea canadensis and Myriophyllum spicatum following a pulse exposure to the herbicide iofensulfuron-sodium in outdoor stream mesocosms.
    Wieczorek MV; Bakanov N; Lagadic L; Bruns E; Schulz R
    Environ Toxicol Chem; 2017 Apr; 36(4):1090-1100. PubMed ID: 27696510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of toxicants with different modes of action on Myriophyllum spicatum in test systems with varying complexity.
    Mohr S; Schott J; Maletzki D; Hünken A
    Ecotoxicol Environ Saf; 2013 Nov; 97():32-9. PubMed ID: 23928028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in antioxidant activity, total phenolic and abscisic acid constituents in the aquatic plants Myriophyllum spicatum L. and Myriophyllum triphyllum Orchard exposed to cadmium.
    Sivaci A; Sivaci ER; Sökmen M
    Ecotoxicology; 2007 Jul; 16(5):423-8. PubMed ID: 17486442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and Physiological Responses in Myriophyllum spicatum L. Exposed to Linear Alkylbenzene Sulfonate.
    Liu Y; Liu N; Zhou Y; Wang F; Zhang Y; Wu Z
    Environ Toxicol Chem; 2019 Sep; 38(9):2073-2081. PubMed ID: 31099934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing growth development of Myriophyllum spp. in laboratory and field experiments for ecotoxicological testing.
    Knauer K; Mohr S; Feiler U
    Environ Sci Pollut Res Int; 2008 Jun; 15(4):322-31. PubMed ID: 18491155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field level evaluation and risk assessment of the toxicity of dichloroacetic acid to the aquatic macrophytes Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum.
    Hanson ML; Sibley PK; Mabury SA; Muir DC; Solomon KR
    Ecotoxicol Environ Saf; 2003 May; 55(1):46-63. PubMed ID: 12706393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does intraspecific variability matter in ecological risk assessment? Investigation of genotypic variations in three macrophyte species exposed to copper.
    Roubeau Dumont E; Larue C; Lorber S; Gryta H; Billoir E; Gross EM; Elger A
    Aquat Toxicol; 2019 Jun; 211():29-37. PubMed ID: 30913512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal dynamics of the macrophyte test species Myriophyllum spicatum over two years in experimental ditches for population modeling application in risk assessment.
    Arts GHP; van Smeden J; Wolters MF; Belgers JDM; Matser AM; Hommen U; Bruns E; Heine S; Solga A; Taylor S
    Integr Environ Assess Manag; 2022 Sep; 18(5):1375-1386. PubMed ID: 34755447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of monochloroacetic acid (MCA) degradation and toxicity to Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms.
    Hanson ML; Sibley PK; Ellis DA; Mabury SA; Muir DC; Solomon KR
    Aquat Toxicol; 2002 Dec; 61(3-4):251-73. PubMed ID: 12359395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A toxicokinetic and toxicodynamic modeling approach using Myriophyllum spicatum to predict effects caused by short-term exposure to a sulfonylurea.
    Heine S; Schild F; Schmitt W; Krebber R; Görlitz G; Preuss TG
    Environ Toxicol Chem; 2016 Feb; 35(2):376-84. PubMed ID: 26174603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trichloroacetic acid fate and toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum under field conditions.
    Hanson ML; Sibley PK; Ellis DA; Fineberg NA; Mabury SA; Solomon KR; Muir DC
    Aquat Toxicol; 2002 Mar; 56(4):241-55. PubMed ID: 11856574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of arsenate As (V) on the biomarkers of Myriophyllum alterniflorum in oligotrophic and eutrophic conditions.
    Krayem M; Deluchat V; Rabiet M; Cleries K; Lenain JF; Saad Z; Kazpard V; Labrousse P
    Chemosphere; 2016 Mar; 147():131-7. PubMed ID: 26766024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies of the response of sensitive and tolerant submerged macrophytes to high ammonium concentration stress.
    Gao J; Ren P; Zhou Q; Zhang J
    Aquat Toxicol; 2019 Jun; 211():57-65. PubMed ID: 30952066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of epiphytic algae on biomass and physiology of Myriophyllum spicatum L. with the increase of nitrogen and phosphorus availability in the water body.
    Song YZ; Wang JQ; Gao YX
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9548-9555. PubMed ID: 28243961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotypes of the aquatic plant Myriophyllum spicatum with different growth strategies show contrasting sensitivities to copper contamination.
    Roubeau Dumont E; Larue C; Michel HC; Gryta H; Liné C; Baqué D; Maria Gross E; Elger A
    Chemosphere; 2020 Apr; 245():125552. PubMed ID: 31846788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some arguments in favor of a Myriophyllum aquaticum growth inhibition test in a water-sediment system as an additional test in risk assessment of herbicides.
    Tunić T; Knežević V; Kerkez Đ; Tubić A; Šunjka D; Lazić S; Brkić D; Teodorović I
    Environ Toxicol Chem; 2015 Sep; 34(9):2104-15. PubMed ID: 25943248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of polycyclic aromatic hydrocarbons.
    Marwood CA; Solomon KR; Greenberg BM
    Environ Toxicol Chem; 2001 Apr; 20(4):890-8. PubMed ID: 11345466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The combined and interactive effects of zinc, temperature, and phosphorus on the structure and functioning of a freshwater community.
    Van de Perre D; Roessink I; Janssen CR; Smolders E; De Laender F; Van den Brink PJ; De Schamphelaere KAC
    Environ Toxicol Chem; 2018 Sep; 37(9):2413-2427. PubMed ID: 29926964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.