These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 27597822)

  • 1. Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality.
    Lozano-Soldevilla D; Ter Huurne N; Oostenveld R
    Front Comput Neurosci; 2016; 10():87. PubMed ID: 27597822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings.
    Siebenhühner F; Wang SH; Arnulfo G; Lampinen A; Nobili L; Palva JM; Palva S
    PLoS Biol; 2020 May; 18(5):e3000685. PubMed ID: 32374723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring directionality between neuronal oscillations of different frequencies.
    Jiang H; Bahramisharif A; van Gerven MA; Jensen O
    Neuroimage; 2015 Sep; 118():359-67. PubMed ID: 26025291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Working Memory and Cross-Frequency Coupling of Neuronal Oscillations.
    Abubaker M; Al Qasem W; Kvašňák E
    Front Psychol; 2021; 12():756661. PubMed ID: 34744934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex interplay between spectral harmonicity and different types of cross-frequency couplings in nonlinear oscillators and biologically plausible neural network models.
    Dellavale D; Velarde OM; Mato G; Urdapilleta E
    Phys Rev E; 2020 Dec; 102(6-1):062401. PubMed ID: 33466042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial neuronal synchronization and the waveform of oscillations: Implications for EEG and MEG.
    Schaworonkow N; Nikulin VV
    PLoS Comput Biol; 2019 May; 15(5):e1007055. PubMed ID: 31086368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different coupling modes mediate cortical cross-frequency interactions.
    Helfrich RF; Herrmann CS; Engel AK; Schneider TR
    Neuroimage; 2016 Oct; 140():76-82. PubMed ID: 26608244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Misidentifications of specific forms of cross-frequency coupling: three warnings.
    Hyafil A
    Front Neurosci; 2015; 9():370. PubMed ID: 26500488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Impact of I
    Felton MA; Yu AB; Boothe DL; Oie KS; Franaszczuk PJ
    Front Comput Neurosci; 2020; 14():81. PubMed ID: 33013344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal characteristics and pharmacological modulation of multiple gamma oscillations in the CA1 region of the hippocampus.
    Balakrishnan S; Pearce RA
    Front Neural Circuits; 2014; 8():150. PubMed ID: 25628540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-Frequency Coupling Based Neuromodulation for Treating Neurological Disorders.
    Salimpour Y; Anderson WS
    Front Neurosci; 2019; 13():125. PubMed ID: 30846925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral Spreading Depression Transient Disruption of Cross-Frequency Coupling in the Rat Brain: Preliminary Observations.
    Zhang T; Nemoto EM
    Adv Exp Med Biol; 2021; 1269():209-216. PubMed ID: 33966219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms.
    Ibrahim GM; Wong SM; Anderson RA; Singh-Cadieux G; Akiyama T; Ochi A; Otsubo H; Okanishi T; Valiante TA; Donner E; Rutka JT; Snead OC; Doesburg SM
    Exp Neurol; 2014 Jan; 251():30-8. PubMed ID: 24211781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column.
    Sotero RC
    PLoS Comput Biol; 2016 Nov; 12(11):e1005180. PubMed ID: 27802274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discriminating Valid from Spurious Indices of Phase-Amplitude Coupling.
    Jensen O; Spaak E; Park H
    eNeuro; 2016; 3(6):. PubMed ID: 28101528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks.
    Voytek B; Canolty RT; Shestyuk A; Crone NE; Parvizi J; Knight RT
    Front Hum Neurosci; 2010; 4():191. PubMed ID: 21060716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPi Oscillatory Activity Differentiates Tics from the Resting State, Voluntary Movements, and the Unmedicated Parkinsonian State.
    Jimenez-Shahed J; Telkes I; Viswanathan A; Ince NF
    Front Neurosci; 2016; 10():436. PubMed ID: 27733815
    [No Abstract]   [Full Text] [Related]  

  • 19. Harmoni: A method for eliminating spurious interactions due to the harmonic components in neuronal data.
    Idaji MJ; Zhang J; Stephani T; Nolte G; Müller KR; Villringer A; Nikulin VV
    Neuroimage; 2022 May; 252():119053. PubMed ID: 35247548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal cross-frequency coupling in the tinnitus network.
    Adamchic I; Langguth B; Hauptmann C; Tass PA
    Front Neurosci; 2014; 8():284. PubMed ID: 25309309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.