BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27598117)

  • 1. The Search for Covalently Ligandable Proteins in Biological Systems.
    Badshah SL; Mabkhot YN
    Molecules; 2016 Sep; 21(9):. PubMed ID: 27598117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome-wide covalent ligand discovery in native biological systems.
    Backus KM; Correia BE; Lum KM; Forli S; Horning BD; González-Páez GE; Chatterjee S; Lanning BR; Teijaro JR; Olson AJ; Wolan DW; Cravatt BF
    Nature; 2016 Jun; 534(7608):570-4. PubMed ID: 27309814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
    Gupta V; Yang J; Liebler DC; Carroll KS
    J Am Chem Soc; 2017 Apr; 139(15):5588-5595. PubMed ID: 28355876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics.
    White MEH; Gil J; Tate EW
    Cell Chem Biol; 2023 Jul; 30(7):828-838.e4. PubMed ID: 37451266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells.
    Vinogradova EV; Zhang X; Remillard D; Lazar DC; Suciu RM; Wang Y; Bianco G; Yamashita Y; Crowley VM; Schafroth MA; Yokoyama M; Konrad DB; Lum KM; Simon GM; Kemper EK; Lazear MR; Yin S; Blewett MM; Dix MM; Nguyen N; Shokhirev MN; Chin EN; Lairson LL; Melillo B; Schreiber SL; Forli S; Teijaro JR; Cravatt BF
    Cell; 2020 Aug; 182(4):1009-1026.e29. PubMed ID: 32730809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Tractable Cysteines for Covalent Targeting by Screening Covalent Fragments.
    Petri L; Ábrányi-Balogh P; Tímea I; Pálfy G; Perczel A; Knez D; Hrast M; Gobec M; Sosič I; Nyíri K; Vértessy BG; Jänsch N; Desczyk C; Meyer-Almes FJ; Ogris I; Golič Grdadolnik S; Iacovino LG; Binda C; Gobec S; Keserű GM
    Chembiochem; 2021 Feb; 22(4):743-753. PubMed ID: 33030752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assigning functionality to cysteines by base editing of cancer dependency genes.
    Li H; Ma T; Remsberg JR; Won SJ; DeMeester KE; Njomen E; Ogasawara D; Zhao KT; Huang TP; Lu B; Simon GM; Melillo B; Schreiber SL; Lykke-Andersen J; Liu DR; Cravatt BF
    Nat Chem Biol; 2023 Nov; 19(11):1320-1330. PubMed ID: 37783940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Chemoproteomic Profiling with Data-Independent Acquisition-Based Mass Spectrometry.
    Yang F; Jia G; Guo J; Liu Y; Wang C
    J Am Chem Soc; 2022 Jan; 144(2):901-911. PubMed ID: 34986311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of a Tunable Heterocyclic Electrophile 4-Chloro-pyrazolopyridine That Defines a Unique Subset of Ligandable Cysteines.
    Kim HR; Byun DP; Thakur K; Ritchie J; Xie Y; Holewinski R; Suazo KF; Stevens M; Liechty H; Tagirasa R; Jing Y; Andresson T; Johnson SM; Yoo E
    ACS Chem Biol; 2024 May; 19(5):1082-1092. PubMed ID: 38629450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
    Ward CC; Kleinman JI; Nomura DK
    ACS Chem Biol; 2017 Jun; 12(6):1478-1483. PubMed ID: 28445029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome-Wide Profiling of the Covalent-Druggable Cysteines with a Structure-Based Deep Graph Learning Network.
    Du H; Jiang D; Gao J; Zhang X; Jiang L; Zeng Y; Wu Z; Shen C; Xu L; Cao D; Hou T; Pan P
    Research (Wash D C); 2022; 2022():9873564. PubMed ID: 35958111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleophilic covalent ligand discovery for the cysteine redoxome.
    Fu L; Jung Y; Tian C; Ferreira RB; Cheng R; He F; Yang J; Carroll KS
    Nat Chem Biol; 2023 Nov; 19(11):1309-1319. PubMed ID: 37248412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-Acryloylindole-alkyne (NAIA) enables imaging and profiling new ligandable cysteines and oxidized thiols by chemoproteomics.
    Koo TY; Lai H; Nomura DK; Chung CY
    Nat Commun; 2023 Jun; 14(1):3564. PubMed ID: 37322008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent docking of large libraries for the discovery of chemical probes.
    London N; Miller RM; Krishnan S; Uchida K; Irwin JJ; Eidam O; Gibold L; Cimermančič P; Bonnet R; Shoichet BK; Taunton J
    Nat Chem Biol; 2014 Dec; 10(12):1066-72. PubMed ID: 25344815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive-cysteine profiling for drug discovery.
    Maurais AJ; Weerapana E
    Curr Opin Chem Biol; 2019 Jun; 50():29-36. PubMed ID: 30897495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global profiling of lysine reactivity and ligandability in the human proteome.
    Hacker SM; Backus KM; Lazear MR; Forli S; Correia BE; Cravatt BF
    Nat Chem; 2017 Dec; 9(12):1181-1190. PubMed ID: 29168484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Reactive are Druggable Cysteines in Protein Kinases?
    Awoonor-Williams E; Rowley CN
    J Chem Inf Model; 2018 Sep; 58(9):1935-1946. PubMed ID: 30118220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CysDB: a human cysteine database based on experimental quantitative chemoproteomics.
    Boatner LM; Palafox MF; Schweppe DK; Backus KM
    Cell Chem Biol; 2023 Jun; 30(6):683-698.e3. PubMed ID: 37119813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Proteome-Wide Potential for Reversible Covalency at Cysteine.
    Senkane K; Vinogradova EV; Suciu RM; Crowley VM; Zaro BW; Bradshaw JM; Brameld KA; Cravatt BF
    Angew Chem Int Ed Engl; 2019 Aug; 58(33):11385-11389. PubMed ID: 31222866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.