BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27598117)

  • 21. Isotopically Labeled Desthiobiotin Azide (isoDTB) Tags Enable Global Profiling of the Bacterial Cysteinome.
    Zanon PRA; Lewald L; Hacker SM
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2829-2836. PubMed ID: 31782878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systematic Studies on the Protocol and Criteria for Selecting a Covalent Docking Tool.
    Wen C; Yan X; Gu Q; Du J; Wu D; Lu Y; Zhou H; Xu J
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31185706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cysteine tagging for MS-based proteomics.
    Giron P; Dayon L; Sanchez JC
    Mass Spectrom Rev; 2011; 30(3):366-95. PubMed ID: 21500242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sample multiplexing with cysteine-selective approaches: cysDML and cPILOT.
    Gu L; Evans AR; Robinson RA
    J Am Soc Mass Spectrom; 2015 Apr; 26(4):615-30. PubMed ID: 25588721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemoproteomic Screening of Covalent Ligands Reveals UBA5 As a Novel Pancreatic Cancer Target.
    Roberts AM; Miyamoto DK; Huffman TR; Bateman LA; Ives AN; Akopian D; Heslin MJ; Contreras CM; Rape M; Skibola CF; Nomura DK
    ACS Chem Biol; 2017 Apr; 12(4):899-904. PubMed ID: 28186401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites.
    Cimermancic P; Weinkam P; Rettenmaier TJ; Bichmann L; Keedy DA; Woldeyes RA; Schneidman-Duhovny D; Demerdash ON; Mitchell JC; Wells JA; Fraser JS; Sali A
    J Mol Biol; 2016 Feb; 428(4):709-719. PubMed ID: 26854760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A proteome-wide atlas of lysine-reactive chemistry.
    Abbasov ME; Kavanagh ME; Ichu TA; Lazear MR; Tao Y; Crowley VM; Am Ende CW; Hacker SM; Ho J; Dix MM; Suciu R; Hayward MM; Kiessling LL; Cravatt BF
    Nat Chem; 2021 Nov; 13(11):1081-1092. PubMed ID: 34504315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs.
    Wang Y; Dix MM; Bianco G; Remsberg JR; Lee HY; Kalocsay M; Gygi SP; Forli S; Vite G; Lawrence RM; Parker CG; Cravatt BF
    Nat Chem; 2019 Dec; 11(12):1113-1123. PubMed ID: 31659311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a New Type of Covalent PPARγ Agonist using a Ligand-Linking Strategy.
    Ohtera A; Miyamae Y; Yoshida K; Maejima K; Akita T; Kakizuka A; Irie K; Masuda S; Kambe T; Nagao M
    ACS Chem Biol; 2015 Dec; 10(12):2794-804. PubMed ID: 26414848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Promiscuity and selectivity in covalent enzyme inhibition: a systematic study of electrophilic fragments.
    Jöst C; Nitsche C; Scholz T; Roux L; Klein CD
    J Med Chem; 2014 Sep; 57(18):7590-9. PubMed ID: 25148591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 2-Sulfonylpyridines as Tunable, Cysteine-Reactive Electrophiles.
    Zambaldo C; Vinogradova EV; Qi X; Iaconelli J; Suciu RM; Koh M; Senkane K; Chadwick SR; Sanchez BB; Chen JS; Chatterjee AK; Liu P; Schultz PG; Cravatt BF; Bollong MJ
    J Am Chem Soc; 2020 May; 142(19):8972-8979. PubMed ID: 32302104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes.
    Chen Y; Craven GB; Kamber RA; Cuesta A; Zhersh S; Moroz YS; Bassik MC; Taunton J
    Nat Chem; 2023 Nov; 15(11):1616-1625. PubMed ID: 37460812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lysine-Targeted Inhibitors and Chemoproteomic Probes.
    Cuesta A; Taunton J
    Annu Rev Biochem; 2019 Jun; 88():365-381. PubMed ID: 30633551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemoproteomics-enabled covalent ligand screen reveals a cysteine hotspot in reticulon 4 that impairs ER morphology and cancer pathogenicity.
    Bateman LA; Nguyen TB; Roberts AM; Miyamoto DK; Ku WM; Huffman TR; Petri Y; Heslin MJ; Contreras CM; Skibola CF; Olzmann JA; Nomura DK
    Chem Commun (Camb); 2017 Jun; 53(53):7234-7237. PubMed ID: 28352901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemoisosterism in the proteome.
    Jalencas X; Mestres J
    J Chem Inf Model; 2013 Feb; 53(2):279-92. PubMed ID: 23312010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical Analysis and Prediction of Covalent Ligand Targeted Cysteine Residues.
    Zhang W; Pei J; Lai L
    J Chem Inf Model; 2017 Jun; 57(6):1453-1460. PubMed ID: 28510428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine Learning Models to Interrogate Proteome-Wide Covalent Ligandabilities Directed at Cysteines.
    Liu R; Clayton J; Shen M; Bhatnagar S; Shen J
    JACS Au; 2024 Apr; 4(4):1374-1384. PubMed ID: 38665640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods.
    Moitessier N; Pottel J; Therrien E; Englebienne P; Liu Z; Tomberg A; Corbeil CR
    Acc Chem Res; 2016 Sep; 49(9):1646-57. PubMed ID: 27529781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fragment-based covalent ligand discovery.
    Lu W; Kostic M; Zhang T; Che J; Patricelli MP; Jones LH; Chouchani ET; Gray NS
    RSC Chem Biol; 2021 Apr; 2(2):354-367. PubMed ID: 34458789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.