These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 27598260)

  • 1. Transition between Functional Regimes in an Integrate-And-Fire Network Model of the Thalamus.
    Barardi A; Garcia-Ojalvo J; Mazzoni A
    PLoS One; 2016; 11(9):e0161934. PubMed ID: 27598260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrate-and-fire network model of activity propagation from thalamus to cortex.
    Saponati M; Garcia-Ojalvo J; Cataldo E; Mazzoni A
    Biosystems; 2019 Sep; 183():103978. PubMed ID: 31152773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multivariate population density model of the dLGN/PGN relay.
    Huertas MA; Smith GD
    J Comput Neurosci; 2006 Oct; 21(2):171-89. PubMed ID: 16788765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow-wave oscillations in a corticothalamic model of sleep and wake.
    Zhao X; Kim JW; Robinson PA
    J Theor Biol; 2015 Apr; 370():93-102. PubMed ID: 25659479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures.
    Lytton WW; Contreras D; Destexhe A; Steriade M
    J Neurophysiol; 1997 Apr; 77(4):1679-96. PubMed ID: 9114229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons.
    Destexhe A
    J Comput Neurosci; 2009 Dec; 27(3):493-506. PubMed ID: 19499317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms.
    Wang XJ; Golomb D; Rinzel J
    Proc Natl Acad Sci U S A; 1995 Jun; 92(12):5577-81. PubMed ID: 7777551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices.
    Destexhe A; Bal T; McCormick DA; Sejnowski TJ
    J Neurophysiol; 1996 Sep; 76(3):2049-70. PubMed ID: 8890314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational model of how an interaction between the thalamocortical and thalamic reticular neurons transforms the low-frequency oscillations of the globus pallidus.
    Hadipour-Niktarash A
    J Comput Neurosci; 2006 Jun; 20(3):299-320. PubMed ID: 16683209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization of isolated downstates (K-complexes) may be caused by cortically-induced disruption of thalamic spindling.
    Mak-McCully RA; Deiss SR; Rosen BQ; Jung KY; Sejnowski TJ; Bastuji H; Rey M; Cash SS; Bazhenov M; Halgren E
    PLoS Comput Biol; 2014 Sep; 10(9):e1003855. PubMed ID: 25255217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model of thalamocortical slow-wave sleep oscillations and transitions to activated States.
    Bazhenov M; Timofeev I; Steriade M; Sejnowski TJ
    J Neurosci; 2002 Oct; 22(19):8691-704. PubMed ID: 12351744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiking patterns and synchronization of thalamic neurons along the sleep-wake cycle.
    Holmgren Hopkins N; Sanz-Leon P; Roy D; Postnova S
    Chaos; 2018 Oct; 28(10):106314. PubMed ID: 30384650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimentally-constrained biophysical models of tonic and burst firing modes in thalamocortical neurons.
    Iavarone E; Yi J; Shi Y; Zandt BJ; O'Reilly C; Van Geit W; Rössert C; Markram H; Hill SL
    PLoS Comput Biol; 2019 May; 15(5):e1006753. PubMed ID: 31095552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation of spindle waves in a thalamic slice model.
    Golomb D; Wang XJ; Rinzel J
    J Neurophysiol; 1996 Feb; 75(2):750-69. PubMed ID: 8714650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring spike transfer through the thalamus using hybrid artificial-biological neuronal networks.
    Debay D; Wolfart J; Le Franc Y; Le Masson G; Bal T
    J Physiol Paris; 2004; 98(4-6):540-58. PubMed ID: 16289755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High frequency stimulation abolishes thalamic network oscillations: an electrophysiological and computational analysis.
    Lee KH; Hitti FL; Chang SY; Lee DC; Roberts DW; McIntyre CC; Leiter JC
    J Neural Eng; 2011 Aug; 8(4):046001. PubMed ID: 21623007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thalamic inhibitory circuits and network activity development.
    Murata Y; Colonnese MT
    Brain Res; 2019 Mar; 1706():13-23. PubMed ID: 30366019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiated participation of thalamocortical subnetworks in slow/spindle waves and desynchronization.
    Ushimaru M; Ueta Y; Kawaguchi Y
    J Neurosci; 2012 Feb; 32(5):1730-46. PubMed ID: 22302813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.