These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27598333)

  • 1. Electrochemistry of Single Nanodomains Revealed by Three-Dimensional Holographic Microscopy.
    Brasiliense V; Berto P; Combellas C; Tessier G; Kanoufi F
    Acc Chem Res; 2016 Sep; 49(9):2049-57. PubMed ID: 27598333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemistry at One Nanoparticle.
    Mirkin MV; Sun T; Yu Y; Zhou M
    Acc Chem Res; 2016 Oct; 49(10):2328-2335. PubMed ID: 27626289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical transformation of individual nanoparticles revealed by coupling microscopy and spectroscopy.
    Brasiliense V; Berto P; Combellas C; Kuszelewicz R; Tessier G; Kanoufi F
    Faraday Discuss; 2016 Dec; 193():339-352. PubMed ID: 27711892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The promise of antireflective gold electrodes for optically monitoring the electro-deposition of single silver nanoparticles.
    Lemineur JF; Noël JM; Combellas C; Ausserré D; Kanoufi F
    Faraday Discuss; 2018 Oct; 210(0):381-395. PubMed ID: 29975385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the Elementary Steps of Transport-Reaction Processes at Individual Ag Nanoparticles by 3D Superlocalization Microscopy.
    Patel AN; Martinez-Marrades A; Brasiliense V; Koshelev D; Besbes M; Kuszelewicz R; Combellas C; Tessier G; Kanoufi F
    Nano Lett; 2015 Oct; 15(10):6454-63. PubMed ID: 26327450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.
    Fang Y; Wang H; Yu H; Liu X; Wang W; Chen HY; Tao NJ
    Acc Chem Res; 2016 Nov; 49(11):2614-2624. PubMed ID: 27662069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operando Studies of the Electrochemical Dissolution of Silver Nanoparticles in Nitrate Solutions Observed With Hyperspectral Dark-Field Microscopy.
    Wonner K; Rurainsky C; Tschulik K
    Front Chem; 2019; 7():912. PubMed ID: 32010665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP
    Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Electrodeposition and Optical Microscopy for Probing Size-Dependent Single-Nanoparticle Electrochemistry.
    Lemineur JF; Noël JM; Ausserré D; Combellas C; Kanoufi F
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):11998-12002. PubMed ID: 30024085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlated Electrochemical and Optical Detection Reveals the Chemical Reactivity of Individual Silver Nanoparticles.
    Brasiliense V; Patel AN; Martinez-Marrades A; Shi J; Chen Y; Combellas C; Tessier G; Kanoufi F
    J Am Chem Soc; 2016 Mar; 138(10):3478-83. PubMed ID: 26900633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Optical Microscopy Techniques for Electrochemistry.
    Lemineur JF; Wang H; Wang W; Kanoufi F
    Annu Rev Anal Chem (Palo Alto Calif); 2022 Jun; 15(1):57-82. PubMed ID: 35216529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time monitoring of electrochemical reactions on single nanoparticles by dark-field and Raman microscopy.
    Qiu K; Fato TP; Wang PY; Long YT
    Dalton Trans; 2019 Mar; 48(12):3809-3814. PubMed ID: 30734793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical methods for studying local electrochemical reactions with spatial resolution: A critical review.
    Wang Y; Cao Z; Yang Q; Guo W; Su B
    Anal Chim Acta; 2019 Oct; 1074():1-15. PubMed ID: 31159929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the sub-50 ms electrochemical conversion of silver halide nanocolloids by stochastic electrochemistry and optical microscopy.
    Lemineur JF; Noël JM; Combellas C; Kanoufi F
    Nanoscale; 2020 Jul; 12(28):15128-15136. PubMed ID: 32657309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Particle Investigation of Environmental Redox Processes of Arsenic on Cerium Oxide Nanoparticles by Collision Electrochemistry.
    Karimi A; Andreescu S; Andreescu D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24725-24734. PubMed ID: 31190542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Ag nanoparticle surface oxidation in contact with (in)organics: an X-ray scattering and fluorescence yield approach.
    Levard C; Michel FM; Wang Y; Choi Y; Eng P; Brown GE
    J Synchrotron Radiat; 2011 Nov; 18(Pt 6):871-8. PubMed ID: 21997911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced Electrochemistry of Individual Metal Clusters Electrodeposited Atom by Atom to Nanometer by Nanometer.
    Kim J; Dick JE; Bard AJ
    Acc Chem Res; 2016 Nov; 49(11):2587-2595. PubMed ID: 27786462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Single-Nanoparticle Spectroscopy Study of Bimetallic Nanostructure Formation.
    Smith JG; Chakraborty I; Jain PK
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9979-83. PubMed ID: 27381891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the driving force on nanoparticles growth and shape: an opto-electrochemical study.
    Noël JM; Miranda Vieira M; Brasiliense V; Lemineur JF; Combellas C; Kanoufi F
    Nanoscale; 2020 Feb; 12(5):3227-3235. PubMed ID: 31967631
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.