BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27598344)

  • 21. Identification of Maize Kernel Vigor under Different Accelerated Aging Times Using Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Feng X; He Y
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30477266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds.
    Zhang X; Liu F; He Y; Li X
    Sensors (Basel); 2012 Dec; 12(12):17234-46. PubMed ID: 23235456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis.
    Williams P; Geladi P; Fox G; Manley M
    Anal Chim Acta; 2009 Oct; 653(2):121-30. PubMed ID: 19808104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Study of discrimination of corn seed based on near-infrared spectra and artificial neural network model].
    Chen J; Chen X; Li W; Wang JH; Han DH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1806-9. PubMed ID: 18975808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images.
    Miller ND; Haase NJ; Lee J; Kaeppler SM; de Leon N; Spalding EP
    Plant J; 2017 Jan; 89(1):169-178. PubMed ID: 27585732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of maize ( Zea mays ) kernel density and volume using microcomputed tomography and single-kernel near-infrared spectroscopy.
    Gustin JL; Jackson S; Williams C; Patel A; Armstrong P; Peter GF; Settles AM
    J Agric Food Chem; 2013 Nov; 61(46):10872-80. PubMed ID: 24143871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Measuring the Moisture Content in Maize Kernel Based on Hyperspctral Image of Embryo Region].
    Tian X; Huang WQ; Li JB; Fan SX; Zhang BH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3237-42. PubMed ID: 30246759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of genetically modified maize in processed products, dry grains, and corn ears intended for fresh consumption in South Brazil.
    Oliveira CA; Kommers CM; Lehmann FK; Fonseca AS; Ikuta N; Lunge VR
    Genet Mol Res; 2016 Oct; 15(4):. PubMed ID: 27813579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Application of near infrared spectral fingerprint technique in lamb meat origin traceability].
    Sun SM; Guo BL; Wei YM; Fan MT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Apr; 31(4):937-41. PubMed ID: 21714233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection.
    Zhou Q; Huang W; Liang D; Tian X
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.
    Janni J; Weinstock BA; Hagen L; Wright S
    Appl Spectrosc; 2008 Apr; 62(4):423-6. PubMed ID: 18416901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Mapping of QTLs controlling Pb(2+) content in maize kernels under Pb(2+)stress].
    Zhao X; Lin H; Zhang Z; Shen Y; Pan G
    Yi Chuan; 2014 Aug; 36(8):821-6. PubMed ID: 25143280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Fast discrimination of varieties of corn based on near infrared spectra and biomimetic pattern recognition].
    Su Q; Wu WJ; Wang HW; Wang K; An D
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2413-6. PubMed ID: 19950641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of near-infrared hyperspectral imaging to identify a variety of silage maize seeds and common maize seeds.
    Bai X; Zhang C; Xiao Q; He Y; Bao Y
    RSC Adv; 2020 Mar; 10(20):11707-11715. PubMed ID: 35496579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a novel marker and its associated laccase gene for regulating ear length in tropical and subtropical maize lines.
    Bi Y; Jiang F; Zhang Y; Li Z; Kuang T; Shaw RK; Adnan M; Li K; Fan X
    Theor Appl Genet; 2024 Apr; 137(4):94. PubMed ID: 38578443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize.
    Baltazar BM; Castro Espinoza L; Espinoza Banda A; de la Fuente Martínez JM; Garzón Tiznado JA; González García J; Gutiérrez MA; Guzmán Rodríguez JL; Heredia Díaz O; Horak MJ; Madueño Martínez JI; Schapaugh AW; Stojšin D; Uribe Montes HR; Zavala García F
    PLoS One; 2015; 10(7):e0131549. PubMed ID: 26162097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Near infrared spectroscopy analysis method of maize hybrid seed purity discrimination].
    Huang HJ; Yan YL; Shen BH; Liu Z; Gu JC; Li SM; Zhu DH; Zhang XD; Ma Q; Li L; An D
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May; 34(5):1253-8. PubMed ID: 25095417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pollination between maize and teosinte: an important determinant of gene flow in Mexico.
    Baltazar BM; de Jesús Sánchez-Gonzalez J; de la Cruz-Larios L; Schoper JB
    Theor Appl Genet; 2005 Feb; 110(3):519-26. PubMed ID: 15592808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The utility research on NIR diffuse reflectance and transmittance measurements mode in authenticity identification of maize population samples].
    Tang XT; Wu WJ; Guo TT; Jia SQ; Yan YL; An D
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jun; 32(6):1531-4. PubMed ID: 22870633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Descriptive statistics and correlation analysis of agronomic traits in a maize recombinant inbred line population.
    Zhang HM; Hui GQ; Luo Q; Sun Y; Liu XH
    Genet Mol Res; 2014 Jan; 13(1):457-61. PubMed ID: 24535873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.