These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27598464)

  • 1. Effects of partial middle turbinectomy with varying resection volume and location on nasal functions and airflow characteristics by CFD.
    Lee KB; Jeon YS; Chung SK; Kim SK
    Comput Biol Med; 2016 Oct; 77():214-21. PubMed ID: 27598464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of single-sided inferior turbinectomy on nasal function and airflow characteristics.
    Na Y; Chung KS; Chung SK; Kim SK
    Respir Physiol Neurobiol; 2012 Mar; 180(2-3):289-97. PubMed ID: 22227321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Middle versus Inferior Total Turbinectomy on Nasal Aerodynamics.
    Dayal A; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2016 Sep; 155(3):518-25. PubMed ID: 27165673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying patients who may benefit from inferior turbinate reduction using computer simulations.
    Hariri BM; Rhee JS; Garcia GJ
    Laryngoscope; 2015 Dec; 125(12):2635-41. PubMed ID: 25963247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamic effects of inferior turbinate surgery on nasal airflow--a computational fluid dynamics model.
    Chen XB; Leong SC; Lee HP; Chong VF; Wang DY
    Rhinology; 2010 Dec; 48(4):394-400. PubMed ID: 21442074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Middle Turbinectomy on Airflow to the Olfactory Cleft: A Computational Fluid Dynamics Study.
    Alam S; Li C; Bradburn KH; Zhao K; Lee TS
    Am J Rhinol Allergy; 2019 May; 33(3):263-268. PubMed ID: 30543120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection.
    Zhao K; Malhotra P; Rosen D; Dalton P; Pribitkin EA
    Anat Rec (Hoboken); 2014 Nov; 297(11):2187-95. PubMed ID: 25312372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow and air conditioning simulations of computer turbinectomized nose models.
    Pérez-Mota J; Solorio-Ordaz F; Cervantes-de Gortari J
    Med Biol Eng Comput; 2018 Oct; 56(10):1899-1910. PubMed ID: 29658053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nasal air conditioning following total inferior turbinectomy compared to inferior turbinoplasty - A computational fluid dynamics study.
    Siu J; Inthavong K; Dong J; Shang Y; Douglas RG
    Clin Biomech (Bristol, Avon); 2021 Jan; 81():105237. PubMed ID: 33272646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of inferior turbinate hypertrophy on the aerodynamic pattern and physiological functions of the turbulent airflow - a CFD simulation model.
    Chen XB; Lee HP; Chong VF; Wang de Y
    Rhinology; 2010 Jun; 48(2):163-8. PubMed ID: 20502754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of the aerodynamic effects of septoplasty and partial lateral turbinectomy.
    Ozlugedik S; Nakiboglu G; Sert C; Elhan A; Tonuk E; Akyar S; Tekdemir I
    Laryngoscope; 2008 Feb; 118(2):330-4. PubMed ID: 18030167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of airflow fields in two typical nasal structures of empty nose syndrome: a computational fluid dynamics study.
    Di MY; Jiang Z; Gao ZQ; Li Z; An YR; Lv W
    PLoS One; 2013; 8(12):e84243. PubMed ID: 24367645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of the effects of inferior turbinate surgery on nasal airway heating capacity.
    Chen XB; Lee HP; Chong VF; Wang de Y
    Am J Rhinol Allergy; 2010; 24(5):e118-22. PubMed ID: 21244728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction.
    Frank-Ito DO; Kimbell JS; Borojeni AAT; Garcia GJM; Rhee JS
    Clin Biomech (Bristol, Avon); 2019 Jan; 61():172-180. PubMed ID: 30594764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A computational fluid dynamics study of inner flow through nasal cavity with unilateral hypertrophic inferior turbinate].
    Guo Y; Zhang Y; Chen G; Liu S; Lu X; Zhu M; Cai C; Chen X
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2009 Sep; 23(17):773-7. PubMed ID: 20030039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between effects of various partial inferior turbinectomy options on nasal airflow: a computer simulation study.
    Lee HP; Garlapati RR; Chong VF; Wang de Y
    Comput Methods Biomech Biomed Engin; 2013; 16(1):112-8. PubMed ID: 21916676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Fluid Dynamics to Evaluate the Effectiveness of Inferior Turbinate Reduction Techniques to Improve Nasal Airflow.
    Lee TS; Goyal P; Li C; Zhao K
    JAMA Facial Plast Surg; 2018 Jul; 20(4):263-270. PubMed ID: 29372235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamic impact of total inferior turbinectomy versus inferior turbinoplasty - a computational fluid dynamics study.
    Siu J; Inthavong K; Shang Y; Vahaji S; Douglas RG
    Rhinology; 2020 Aug; 58(4):349-359. PubMed ID: 32285046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optimization method for surgical reduction of hypertrophied inferior turbinate.
    Xiong H; Cao H; Huang Y
    J Biomech; 2020 Jan; 99():109503. PubMed ID: 31767289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the effects of radiofrequency tissue ablation, CO2 laser ablation, and partial turbinectomy applications on nasal mucociliary functions.
    Sapçi T; Sahin B; Karavus A; Akbulut UG
    Laryngoscope; 2003 Mar; 113(3):514-9. PubMed ID: 12616206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.