These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27598570)

  • 21. Dual utility of a novel, copper enhanced laccase from Trichoderma aureoviridae.
    Khambhaty Y; Ananth S; Sreeram KJ; Rao JR; Nair BU
    Int J Biol Macromol; 2015 Nov; 81():69-75. PubMed ID: 26231326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligninolytic fungal laccases and their biotechnological applications.
    Singh Arora D; Kumar Sharma R
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of synergistic fungal pretreatment on structure and thermal properties of lignin from corncob.
    You T; Li X; Wang R; Zhang X; Xu F
    Bioresour Technol; 2019 Jan; 272():123-129. PubMed ID: 30317155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase.
    Oliva-Taravilla A; Tomás-Pejó E; Demuez M; González-Fernández C; Ballesteros M
    J Biotechnol; 2016 Jan; 218():94-101. PubMed ID: 26684987
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of laccase production by Trametes versicolor cultivated on industrial waste.
    Tišma M; Znidaršič-Plazl P; Vasić-Rački D; Zelić B
    Appl Biochem Biotechnol; 2012 Jan; 166(1):36-46. PubMed ID: 21989801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review.
    Lundell TK; Mäkelä MR; Hildén K
    J Basic Microbiol; 2010 Feb; 50(1):5-20. PubMed ID: 20175122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of laccase in pulp and paper industry.
    Virk AP; Sharma P; Capalash N
    Biotechnol Prog; 2012; 28(1):21-32. PubMed ID: 22012940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The delignification effects of white-rot fungal pretreatment on thermal characteristics of moso bamboo.
    Zeng Y; Yang X; Yu H; Zhang X; Ma F
    Bioresour Technol; 2012 Jun; 114():437-42. PubMed ID: 22483569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes.
    Levin L; Papinutti L; Forchiassin F
    Bioresour Technol; 2004 Sep; 94(2):169-76. PubMed ID: 15158509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of monomer delignification products by laccase from Trametes versicolor.
    Kolb M; Sieber V; Amann M; Faulstich M; Schieder D
    Bioresour Technol; 2012 Jan; 104():298-304. PubMed ID: 22176974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic Pretreatment with Laccases from
    Freitas EN; Alnoch RC; Contato AG; Nogueira KMV; Crevelin EJ; Moraes LAB; Silva RN; Martínez CA; Polizeli MLTM
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions.
    Vikman M; Karjomaa S; Kapanen A; Wallenius K; Itävaara M
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):591-8. PubMed ID: 12172631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction among multiple microorganisms and effects of nitrogen and carbon supplementations on lignin degradation.
    Lv Y; Chen Y; Sun S; Hu Y
    Bioresour Technol; 2014 Mar; 155():144-51. PubMed ID: 24445191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fungal laccase: properties and activity on lignin.
    Leonowicz A; Cho NS; Luterek J; Wilkolazka A; Wojtas-Wasilewska M; Matuszewska A; Hofrichter M; Wesenberg D; Rogalski J
    J Basic Microbiol; 2001; 41(3-4):185-227. PubMed ID: 11512451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Roles of small laccases from Streptomyces in lignin degradation.
    Majumdar S; Lukk T; Solbiati JO; Bauer S; Nair SK; Cronan JE; Gerlt JA
    Biochemistry; 2014 Jun; 53(24):4047-58. PubMed ID: 24870309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The early oxidative biodegradation steps of residual kraft lignin models with laccase.
    Crestini C; Argyropoulos DS
    Bioorg Med Chem; 1998 Nov; 6(11):2161-9. PubMed ID: 9881106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discrimination against 13C during degradation of simple and complex substrates by two white rot fungi.
    Fernandez I; Cadisch G
    Rapid Commun Mass Spectrom; 2003; 17(23):2614-20. PubMed ID: 14648898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Isolation and characterization of humin-like substances produced by wood-degrading fungi causing white rot].
    Iavmetdinov IS; Stepanova EV; Gavrilova VP; Lokshin BV; Perminova IV; Koroleva OV
    Prikl Biokhim Mikrobiol; 2003; 39(3):293-301. PubMed ID: 12754826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Spectra analysis of lignin small molecular guaiacyl coniferyl alcohol biological modification treated by laccase].
    Liu HT; Pei JC; Hu HR; Pei Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jun; 30(6):1469-73. PubMed ID: 20707131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.