These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27599032)

  • 1. Screening and clustering of sparse regressions with finite non-Gaussian mixtures.
    Zhang J
    Biometrics; 2017 Jun; 73(2):540-550. PubMed ID: 27599032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable selection for clustering with Gaussian mixture models.
    Maugis C; Celeux G; Martin-Magniette ML
    Biometrics; 2009 Sep; 65(3):701-9. PubMed ID: 19210744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sparse negative binomial mixture model for clustering RNA-seq count data.
    Li Y; Rahman T; Ma T; Tang L; Tseng GC
    Biostatistics; 2022 Dec; 24(1):68-84. PubMed ID: 34363675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based clustering based on sparse finite Gaussian mixtures.
    Malsiner-Walli G; Frühwirth-Schnatter S; Grün B
    Stat Comput; 2016; 26(1):303-324. PubMed ID: 26900266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-Based Clustering with Measurement or Estimation Errors.
    Zhang W; Di Y
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32050700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering.
    Frühwirth-Schnatter S; Malsiner-Walli G
    Adv Data Anal Classif; 2019; 13(1):33-64. PubMed ID: 31007770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of clustering parameters using gaussian process regression.
    Rigby P; Pizarro O; Williams SB
    PLoS One; 2014; 9(11):e111522. PubMed ID: 25383766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based clustering with gene ranking using penalized mixtures of heavy-tailed distributions.
    Cozzini A; Jasra A; Montana G
    J Bioinform Comput Biol; 2013 Jun; 11(3):1341007. PubMed ID: 23796184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust clustering using exponential power mixtures.
    Zhang J; Liang F
    Biometrics; 2010 Dec; 66(4):1078-86. PubMed ID: 20163406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adjusting for High-dimensional Covariates in Sparse Precision Matrix Estimation by ℓ
    Yin J; Li H
    J Multivar Anal; 2013 Apr; 116():365-381. PubMed ID: 23687392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models.
    Fan J; Feng Y; Song R
    J Am Stat Assoc; 2011 Jun; 106(494):544-557. PubMed ID: 22279246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model Selection for Exponential Power Mixture Regression Models.
    Jiang Y; Liu J; Zou H; Huang X
    Entropy (Basel); 2024 May; 26(5):. PubMed ID: 38785671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable Selection for Sparse High-Dimensional Nonlinear Regression Models by Combining Nonnegative Garrote and Sure Independence Screening.
    Wu S; Xue H; Wu Y; Wu H
    Stat Sin; 2014 Jul; 24(3):1365-1387. PubMed ID: 25170239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manifold regularized semi-supervised Gaussian mixture model.
    Gan H; Sang N; Huang R
    J Opt Soc Am A Opt Image Sci Vis; 2015 Apr; 32(4):566-75. PubMed ID: 26366765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaussian mixture density modeling, decomposition, and applications.
    Zhuang X; Huang Y; Palaniappan K; Zhao Y
    IEEE Trans Image Process; 1996; 5(9):1293-302. PubMed ID: 18285218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimum Hellinger distance estimation for k-component poisson mixture with random effects.
    Xiang L; Yau KK; Van Hui Y; Lee AH
    Biometrics; 2008 Jun; 64(2):508-18. PubMed ID: 17970817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions.
    Tokuda T; Yoshimoto J; Shimizu Y; Okada G; Takamura M; Okamoto Y; Yamawaki S; Doya K
    PLoS One; 2017; 12(10):e0186566. PubMed ID: 29049392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering based on gaussian processes.
    Kim HC; Lee J
    Neural Comput; 2007 Nov; 19(11):3088-107. PubMed ID: 17883350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust mixture of experts modeling using the t distribution.
    Chamroukhi F
    Neural Netw; 2016 Jul; 79():20-36. PubMed ID: 27093693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fitting Gaussian mixture models on incomplete data.
    McCaw ZR; Aschard H; Julienne H
    BMC Bioinformatics; 2022 Jun; 23(1):208. PubMed ID: 35650523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.