These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27599117)

  • 1. Standoff Mechanical Resonance Spectroscopy Based on Infrared-Sensitive Hydrogel Microcantilevers.
    Chae I; Khan MF; Song J; Kang T; Lee J; Thundat T
    Anal Chem; 2016 Oct; 88(19):9678-9684. PubMed ID: 27599117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.
    Kim S; Lee D; Liu X; Van Neste C; Jeon S; Thundat T
    Sci Rep; 2013; 3():1111. PubMed ID: 23346368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array.
    Lee D; Kim S; Van Neste CW; Lee M; Jeon S; Thundat T
    Nanotechnology; 2014 Jan; 25(3):035501. PubMed ID: 24346340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced nanoplasmonic heating in standoff sensing of explosive residues with infrared reflection-absorption spectroscopy.
    Simin N; Park Y; Lee D; Thundat T; Kim S
    Opt Lett; 2020 Apr; 45(8):2144-2147. PubMed ID: 32287177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standoff Photoacoustic Spectroscopy of Explosives.
    Marcus LS; Holthoff EL; Pellegrino PM
    Appl Spectrosc; 2017 May; 71(5):833-838. PubMed ID: 27340220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speciation of energetic materials on a microcantilever using surface reduction.
    Yi D; Senesac L; Thundat T
    Scanning; 2008; 30(2):208-12. PubMed ID: 18288710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Ultraviolet Standoff Photoacoustic Spectroscopy of Trace Explosives.
    Zrimsek AB; Bykov SV; Asher SA
    Appl Spectrosc; 2019 Jun; 73(6):601-609. PubMed ID: 30012001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Standoff Detection and Identification of Liquid Chemicals on a Reflective Substrate Using a Wavelength-Tunable Quantum Cascade Laser.
    Park S; Son J; Yu J; Lee J
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standoff spectroscopy of surface adsorbed chemicals.
    Van Neste CW; Senesac LR; Thundat T
    Anal Chem; 2009 Mar; 81(5):1952-6. PubMed ID: 19186935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband Mid-Infrared Stand-Off Reflection-Absorption Spectroscopy Using a Pulsed External Cavity Quantum Cascade Laser.
    Liu X; Chae I; Miriyala N; Lee D; Thundat T; Kim S
    Appl Spectrosc; 2017 Jul; 71(7):1494-1505. PubMed ID: 28664781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational spectroscopy standoff detection of explosives.
    Pacheco-Londoño LC; Ortiz-Rivera W; Primera-Pedrozo OM; Hernández-Rivera SP
    Anal Bioanal Chem; 2009 Sep; 395(2):323-35. PubMed ID: 19633965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Standoff pump-probe photothermal detection of hazardous chemicals.
    Sharma RC; Kumar S; Parmar A; Mann M; Prakash S; Thakur SN
    Sci Rep; 2020 Sep; 10(1):15053. PubMed ID: 32929139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double side nanostructuring of microcantilever sensors with TiO
    Thomas G; Gerer G; Schlur L; Schnell F; Cottineau T; Keller V; Spitzer D
    Nanoscale; 2020 Jul; 12(25):13338-13345. PubMed ID: 32573578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep ultraviolet resonance Raman excitation enables explosives detection.
    Tuschel DD; Mikhonin AV; Lemoff BE; Asher SA
    Appl Spectrosc; 2010 Apr; 64(4):425-32. PubMed ID: 20412628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoacoustic remote sensing of suspicious objects for defence and forensic applications.
    Sharma RC; Kumar S; Kumar S; Mann M; Mayank ; Sharma M
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117445. PubMed ID: 31382229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection.
    Hufziger KT; Bykov SV; Asher SA
    Appl Spectrosc; 2017 Feb; 71(2):173-185. PubMed ID: 27895234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct detection and speciation of trace explosives using a nanoporous multifunctional microcantilever.
    Lee D; Kim S; Jeon S; Thundat T
    Anal Chem; 2014 May; 86(10):5077-82. PubMed ID: 24766474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcantilever biosensors.
    Hansen KM; Thundat T
    Methods; 2005 Sep; 37(1):57-64. PubMed ID: 16199177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Nose for Recognition of Volatile Vapor Mixtures Using a Nanopore-Enhanced Opto-Calorimetric Spectroscopy.
    Chae I; Lee D; Kim S; Thundat T
    Anal Chem; 2015 Jul; 87(14):7125-32. PubMed ID: 26111073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcantilever sensors coated with doped polyaniline for the detection of water vapor.
    Steffens C; Leite FL; Manzoli A; Sandoval RD; Fatibello O; Herrmann PS
    Scanning; 2014; 36(3):311-6. PubMed ID: 23817929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.