BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27599445)

  • 1. Manipulating and assembling metallic beads with Optoelectronic Tweezers.
    Zhang S; Juvert J; Cooper JM; Neale SL
    Sci Rep; 2016 Sep; 6():32840. PubMed ID: 27599445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-scaling effects for microparticles and cells manipulated by optoelectronic tweezers.
    Zhang S; Li W; Elsayed M; Tian P; Clark AW; Wheeler AR; Neale SL
    Opt Lett; 2019 Sep; 44(17):4171-4174. PubMed ID: 31465355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escape from an Optoelectronic Tweezer Trap: experimental results and simulations.
    Zhang S; Nikitina A; Chen Y; Zhang Y; Liu L; Flood AG; Juvert J; Chamberlain MD; Kherani NP; Neale SL; Wheeler AR
    Opt Express; 2018 Mar; 26(5):5300-5309. PubMed ID: 29529735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Versatile Optoelectronic Tweezer System for Micro-Objects Manipulation: Transportation, Patterning, Sorting, Rotating and Storage.
    Liang S; Cao Y; Dai Y; Wang F; Bai X; Song B; Zhang C; Gan C; Arai F; Feng L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterned Optoelectronic Tweezers: A New Scheme for Selecting, Moving, and Storing Dielectric Particles and Cells.
    Zhang S; Shakiba N; Chen Y; Zhang Y; Tian P; Singh J; Chamberlain MD; Satkauskas M; Flood AG; Kherani NP; Yu S; Zandstra PW; Wheeler AR
    Small; 2018 Nov; 14(45):e1803342. PubMed ID: 30307718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between positive and negative dielectric microparticles/microorganism in optoelectronic tweezers.
    Liang S; Gan C; Dai Y; Zhang C; Bai X; Zhang S; Wheeler AR; Chen H; Feng L
    Lab Chip; 2021 Nov; 21(22):4379-4389. PubMed ID: 34596652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operational Regimes and Physics Present in Optoelectronic Tweezers.
    Valley JK; Jamshidi A; Ohta AT; Hsu HY; Wu MC
    J Microelectromech Syst; 2008 Apr; 17(2):342-350. PubMed ID: 19079767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation.
    Zhang S; Xu B; Elsayed M; Nan F; Liang W; Valley JK; Liu L; Huang Q; Wu MC; Wheeler AR
    Chem Soc Rev; 2022 Nov; 51(22):9203-9242. PubMed ID: 36285556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays.
    Zarowna-Dabrowska A; Neale SL; Massoubre D; McKendry J; Rae BR; Henderson RK; Rose MJ; Yin H; Cooper JM; Gu E; Dawson MD
    Opt Express; 2011 Jan; 19(3):2720-8. PubMed ID: 21369093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system.
    Hwang H; Choi YJ; Choi W; Kim SH; Jang J; Park JK
    Electrophoresis; 2008 Mar; 29(6):1203-12. PubMed ID: 18297658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel Manipulation and Flexible Assembly of Micro-Spiral
    Liang S; Sun J; Zhang C; Zhu Z; Dai Y; Gan C; Cai J; Chen H; Feng L
    Front Bioeng Biotechnol; 2022; 10():868821. PubMed ID: 35387303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Dielectrophoretic (DEP) Manipulation of Oil-Immersed Aqueous Droplets on a Plasmonic-Enhanced Photoconductive Surface.
    Thio SK; Park SY
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip.
    Yang SM; Tseng SY; Chen HP; Hsu L; Liu CH
    Lab Chip; 2013 Oct; 13(19):3893-902. PubMed ID: 23925640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals.
    Zhang X; Wang J; Tang B; Tan X; Rupp RA; Pan L; Kong Y; Sun Q; Xu J
    Opt Express; 2009 Jun; 17(12):9981-8. PubMed ID: 19506648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems.
    Zhang C; Khoshmanesh K; Mitchell A; Kalantar-Zadeh K
    Anal Bioanal Chem; 2010 Jan; 396(1):401-20. PubMed ID: 19578834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles.
    Wang W; Lin YH; Guan RS; Wen TC; Guo TF; Lee GB
    Opt Express; 2009 Sep; 17(20):17603-13. PubMed ID: 19907545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.