BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27599582)

  • 1. Elucidation of the molecular mechanisms of anaplastic thyroid carcinoma by integrated miRNA and mRNA analysis.
    Liu G; Wu K; Sheng Y
    Oncol Rep; 2016 Nov; 36(5):3005-3013. PubMed ID: 27599582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated analysis of transcriptome data revealed MMP3 and MMP13 as critical genes in anaplastic thyroid cancer progression.
    Ma Y; Cang S; Li G; Su Y; Zhang H; Wang L; Yang J; Shi X; Qin G; Yuan H
    J Cell Physiol; 2019 Dec; 234(12):22260-22271. PubMed ID: 31081124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long noncoding RNA MALAT1 knockdown inhibits progression of anaplastic thyroid carcinoma by regulating miR-200a-3p/FOXA1.
    Gou L; Zou H; Li B
    Cancer Biol Ther; 2019; 20(11):1355-1365. PubMed ID: 31500506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTHRC1 promotes anaplastic thyroid cancer progression by upregulating the proliferation, migration, and invasion of tumor cells.
    Chen Y; Jia L; Zhao K; Chen Z; Han Y; He X
    PeerJ; 2023; 11():e15458. PubMed ID: 37273536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Bioinformatics Analysis of Master Regulators in Anaplastic Thyroid Carcinoma.
    Pan Z; Li L; Fang Q; Qian Y; Zhang Y; Zhu J; Ge M; Huang P
    Biomed Res Int; 2019; 2019():9734576. PubMed ID: 31183379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MiR-155 promotes anaplastic thyroid cancer progression by directly targeting SOCS1.
    Zhang W; Ji W; Zhao X
    BMC Cancer; 2019 Nov; 19(1):1093. PubMed ID: 31718618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Key Pathways and Genes in Anaplastic Thyroid Carcinoma via Integrated Bioinformatics Analysis.
    Hu S; Liao Y; Chen L
    Med Sci Monit; 2018 Sep; 24():6438-6448. PubMed ID: 30213925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MiR-125b inhibits anaplastic thyroid cancer cell migration and invasion by targeting PIK3CD.
    Bu Q; You F; Pan G; Yuan Q; Cui T; Hao L; Zhang J
    Biomed Pharmacother; 2017 Apr; 88():443-448. PubMed ID: 28122310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR-148a inhibits self-renewal of thyroid cancer stem cells via repressing INO80 expression.
    Sheng W; Chen Y; Gong Y; Dong T; Zhang B; Gao W
    Oncol Rep; 2016 Dec; 36(6):3387-3396. PubMed ID: 27779717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. miRNA expression in anaplastic thyroid carcinomas.
    Hébrant A; Floor S; Saiselet M; Antoniou A; Desbuleux A; Snyers B; La C; de Saint Aubain N; Leteurtre E; Andry G; Maenhaut C
    PLoS One; 2014; 9(8):e103871. PubMed ID: 25153510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long noncoding RNA UCA1 promotes anaplastic thyroid cancer cell proliferation via miR‑135a‑mediated c‑myc activation.
    Wang Y; Hou Z; Li D
    Mol Med Rep; 2018 Sep; 18(3):3068-3076. PubMed ID: 30015867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of key pathways and biomarkers in anaplastic thyroid cancer using an integrated analysis.
    Zhou J; Dong S; Shi C
    J BUON; 2020; 25(6):2690-2699. PubMed ID: 33455115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcript-level regulation of MALAT1-mediated cell cycle and apoptosis genes using dual MEK/Aurora kinase inhibitor "BI-847325" on anaplastic thyroid carcinoma.
    Samimi H; Haghpanah V; Irani S; Arefian E; Sohi AN; Fallah P; Soleimani M
    Daru; 2019 Jun; 27(1):1-7. PubMed ID: 31077090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A signature of circadian rhythm genes in driving anaplastic thyroid carcinoma malignant progression.
    Xu T; Jin T; Lu X; Pan Z; Tan Z; Zheng C; Liu Y; Hu X; Ba L; Ren H; Chen J; Zhu C; Ge M; Huang P
    Cell Signal; 2022 Jul; 95():110332. PubMed ID: 35430345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells.
    Zhang X; Liu L; Deng X; Li D; Cai H; Ma Y; Jia C; Wu B; Fan Y; Lv Z
    Oncogene; 2019 Jan; 38(5):699-715. PubMed ID: 30171257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The differences of regulatory networks between papillary and anaplastic thyroid carcinoma: an integrative transcriptomics study.
    Pan Z; Li L; Qian Y; Ge X; Hu X; Zhang Y; Ge M; Huang P
    Cancer Biol Ther; 2020 Sep; 21(9):853-862. PubMed ID: 32887540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knockdown of HCP5 exerts tumor-suppressive functions by up-regulating tumor suppressor miR-128-3p in anaplastic thyroid cancer.
    Chen J; Zhao D; Meng Q
    Biomed Pharmacother; 2019 Aug; 116():108966. PubMed ID: 31102936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TMEM158 May Serve as a Diagnostic Biomarker for Anaplastic Thyroid Carcinoma: An Integrated Bioinformatic Analysis.
    Li HN; Du YY; Xu T; Zhang R; Wang G; Lv ZT; Li XR
    Curr Med Sci; 2020 Dec; 40(6):1137-1147. PubMed ID: 33428142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LncRNA NEAT1 enhances the resistance of anaplastic thyroid carcinoma cells to cisplatin by sponging miR‑9‑5p and regulating SPAG9 expression.
    Yan P; Su Z; Zhang Z; Gao T
    Int J Oncol; 2019 Nov; 55(5):988-1002. PubMed ID: 31485599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BET bromodomain inhibitor JQ1 modulates microRNA expression in thyroid cancer cells.
    Mio C; Conzatti K; Baldan F; Allegri L; Sponziello M; Rosignolo F; Russo D; Filetti S; Damante G
    Oncol Rep; 2018 Feb; 39(2):582-588. PubMed ID: 29251329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.