These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 27599635)

  • 1. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
    Cua M; Wahl DJ; Zhao Y; Lee S; Bonora S; Zawadzki RJ; Jian Y; Sarunic MV
    Sci Rep; 2016 Sep; 6():32223. PubMed ID: 27599635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.
    Antonello J; van Werkhoven T; Verhaegen M; Truong HH; Keller CU; Gerritsen HC
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jun; 31(6):1337-47. PubMed ID: 24977374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration.
    Bueno JM; Skorsetz M; Palacios R; Gualda EJ; Artal P
    J Biomed Opt; 2014 Jan; 19(1):011007. PubMed ID: 23864036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lens-based wavefront sensorless adaptive optics swept source OCT.
    Jian Y; Lee S; Ju MJ; Heisler M; Ding W; Zawadzki RJ; Bonora S; Sarunic MV
    Sci Rep; 2016 Jun; 6():27620. PubMed ID: 27278853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.
    Cha JW; Ballesta J; So PT
    J Biomed Opt; 2010; 15(4):046022. PubMed ID: 20799824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive optics in microscopy.
    Booth MJ
    Philos Trans A Math Phys Eng Sci; 2007 Dec; 365(1861):2829-43. PubMed ID: 17855218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local aberration control to improve efficiency in multiphoton holographic projections.
    Maddalena L; Keizers H; Pozzi P; Carroll E
    Opt Express; 2022 Aug; 30(16):29128-29147. PubMed ID: 36299095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing.
    Rueckel M; Mack-Bucher JA; Denk W
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17137-42. PubMed ID: 17088565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics.
    Bortoletto F; Bonoli C; Panizzolo P; Ciubotaru CD; Mammano F
    PLoS One; 2011; 6(7):e22321. PubMed ID: 21814575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large field of view aberrations correction with deformable lenses and multi conjugate adaptive optics.
    Furieri T; Bassi A; Bonora S
    J Biophotonics; 2023 Dec; 16(12):e202300104. PubMed ID: 37556187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prism-based multicolor fluorescence correlation spectrometer.
    Hwang LC; Leutenegger M; Gösch M; Lasser T; Rigler P; Meier W; Wohland T
    Opt Lett; 2006 May; 31(9):1310-2. PubMed ID: 16642095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of spherical aberration in multi-focal multiphoton microscopy with spatial light modulator.
    Matsumoto N; Konno A; Ohbayashi Y; Inoue T; Matsumoto A; Uchimura K; Kadomatsu K; Okazaki S
    Opt Express; 2017 Mar; 25(6):7055-7068. PubMed ID: 28381046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy.
    Tanabe A; Hibi T; Ipponjima S; Matsumoto K; Yokoyama M; Kurihara M; Hashimoto N; Nemoto T
    J Biomed Opt; 2015 Oct; 20(10):101204. PubMed ID: 26244766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy.
    Wright AJ; Burns D; Patterson BA; Poland SP; Valentine GJ; Girkin JM
    Microsc Res Tech; 2005 May; 67(1):36-44. PubMed ID: 16025475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of wavefront errors in mouse cranial bone using second-harmonic generation.
    Tehrani KF; Kner P; Mortensen LJ
    J Biomed Opt; 2017 Mar; 22(3):36012. PubMed ID: 28323304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavefront-sensorless adaptive optics with a laser-free spinning disk confocal microscope.
    Hussain SA; Kubo T; Hall N; Gala D; Hampson K; Parton R; Phillips MA; Wincott M; Fujita K; Davis I; Dobbie I; Booth MJ
    J Microsc; 2022 Nov; 288(2):106-116. PubMed ID: 33128278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics.
    Ren M; Chen J; Chen D; Chen SC
    Opt Lett; 2020 May; 45(9):2656-2659. PubMed ID: 32356846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.
    Adie SG; Graf BW; Ahmad A; Carney PS; Boppart SA
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7175-80. PubMed ID: 22538815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses.
    Wen W; Wang Y; Liu H; Wang K; Qiu P; Wang K
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28766923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.