BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27599761)

  • 1. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses.
    Wicker T; Yu Y; Haberer G; Mayer KF; Marri PR; Rounsley S; Chen M; Zuccolo A; Panaud O; Wing RA; Roffler S
    Nat Commun; 2016 Sep; 7():12790. PubMed ID: 27599761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L).
    Zhu QH; Hoque MS; Dennis ES; Upadhyaya NM
    BMC Plant Biol; 2003 Sep; 3():6. PubMed ID: 14503923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rim 2/Hipa CACTA transposon display: a new genetic marker technique in Oryza species.
    Kwon SJ; Park KC; Kim JH; Lee JK; Kim NS
    BMC Genet; 2005 Mar; 6():15. PubMed ID: 15766385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice.
    Huang J; Zhang K; Shen Y; Huang Z; Li M; Tang D; Gu M; Cheng Z
    Genomics; 2009 Mar; 93(3):274-81. PubMed ID: 19071208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of an active miniature inverted-repeat transposable element mJing in rice.
    Tang Y; Ma X; Zhao S; Xue W; Zheng X; Sun H; Gu P; Zhu Z; Sun C; Liu F; Tan L
    Plant J; 2019 May; 98(4):639-653. PubMed ID: 30689248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobilization of a transposon in the rice genome.
    Nakazaki T; Okumoto Y; Horibata A; Yamahira S; Teraishi M; Nishida H; Inoue H; Tanisaka T
    Nature; 2003 Jan; 421(6919):170-2. PubMed ID: 12520304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses.
    Bureau TE; Wessler SR
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1411-5. PubMed ID: 8108422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-edged role for the transposable element Kiddo in the rice ubiquitin2 promoter.
    Yang G; Lee YH; Jiang Y; Shi X; Kertbundit S; Hall TC
    Plant Cell; 2005 May; 17(5):1559-68. PubMed ID: 15805485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaconda, a new class of transposon belonging to the Mu superfamily, has diversified by acquiring host genes during rice evolution.
    Ohtsu K; Hirano HY; Tsutsumi N; Hirai A; Nakazono M
    Mol Genet Genomics; 2005 Dec; 274(6):606-15. PubMed ID: 16208489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA methylation changes facilitated evolution of genes derived from Mutator-like transposable elements.
    Wang J; Yu Y; Tao F; Zhang J; Copetti D; Kudrna D; Talag J; Lee S; Wing RA; Fan C
    Genome Biol; 2016 May; 17(1):92. PubMed ID: 27154274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide comparison of Asian and African rice reveals high recent activity of DNA transposons.
    Roffler S; Wicker T
    Mob DNA; 2015; 6():8. PubMed ID: 25954322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CACTA and MITE transposon distributions on a genetic map of rice using F15 RILs derived from Milyang 23 and Gihobyeo hybrids.
    Kwon SJ; Hong SW; Son JH; Lee JK; Cha YS; Eun MY; Kim NS
    Mol Cells; 2006 Jun; 21(3):360-6. PubMed ID: 16819298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary origin of Rosaceae-specific active non-autonomous hAT elements and their contribution to gene regulation and genomic structural variation.
    Wang L; Peng Q; Zhao J; Ren F; Zhou H; Wang W; Liao L; Owiti A; Jiang Q; Han Y
    Plant Mol Biol; 2016 May; 91(1-2):179-91. PubMed ID: 26941188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation and purifying selection of transcribed genes located in a rice centromere.
    Fan C; Walling JG; Zhang J; Hirsch CD; Jiang J; Wing RA
    Plant Cell; 2011 Aug; 23(8):2821-30. PubMed ID: 21856794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tiling microarray expression analysis of rice chromosome 4 suggests a chromosome-level regulation of transcription.
    Jiao Y; Jia P; Wang X; Su N; Yu S; Zhang D; Ma L; Feng Q; Jin Z; Li L; Xue Y; Cheng Z; Zhao H; Han B; Deng XW
    Plant Cell; 2005 Jun; 17(6):1641-57. PubMed ID: 15863518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic characterization of Rim2/Hipa elements reveals a CACTA-like transposon superfamily with unique features in the rice genome.
    Wang GD; Tian PF; Cheng ZK; Wu G; Jiang JM; Li DB; Li Q; He ZH
    Mol Genet Genomics; 2003 Nov; 270(3):234-42. PubMed ID: 14513364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CG hypomethylation leads to complex changes in DNA methylation and transpositional burst of diverse transposable elements in callus cultures of rice.
    Hu L; Li N; Zhang Z; Meng X; Dong Q; Xu C; Gong L; Liu B
    Plant J; 2020 Jan; 101(1):188-203. PubMed ID: 31529551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transposon-derived gene family regulates heading date in rice.
    Fan F; Cheng M; Yuan H; Li N; Liu M; Cai M; Luo X; Ahmad A; Li N; Li S
    Plant Sci; 2023 Dec; 337():111871. PubMed ID: 37722508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversification of the rice Waxy gene by insertion of mobile DNA elements into introns.
    Umeda M; Ohtsubo H; Ohtsubo E
    Jpn J Genet; 1991 Oct; 66(5):569-86. PubMed ID: 1685658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an active transposon in intact rice plants.
    Fujino K; Sekiguchi H; Kiguchi T
    Mol Genet Genomics; 2005 Apr; 273(2):150-7. PubMed ID: 15803319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.