These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 27599870)
1. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters. Jiang F; Peng P Sci Rep; 2016 Sep; 6():32639. PubMed ID: 27599870 [TBL] [Abstract][Full Text] [Related]
2. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
3. Equilibria and Rate Phenomena from Atomistic to Mesoscale: Simulation Studies of Magnetite. Lininger CN; Brady NW; West AC Acc Chem Res; 2018 Mar; 51(3):583-590. PubMed ID: 29498267 [TBL] [Abstract][Full Text] [Related]
4. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry. Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099 [TBL] [Abstract][Full Text] [Related]
5. Revealing the Rate-Limiting Li-Ion Diffusion Pathway in Ultrathick Electrodes for Li-Ion Batteries. Gao H; Wu Q; Hu Y; Zheng JP; Amine K; Chen Z J Phys Chem Lett; 2018 Sep; 9(17):5100-5104. PubMed ID: 30130117 [TBL] [Abstract][Full Text] [Related]
6. Facile conversion of commercial coarse-type LiCoO2 to nanocomposite-separated nanolayer architectures as a way for electrode performance enhancement. Zhao Y; Sha Y; Lin Q; Zhong Y; Tade MO; Shao Z ACS Appl Mater Interfaces; 2015 Jan; 7(3):1787-94. PubMed ID: 25561439 [TBL] [Abstract][Full Text] [Related]
7. Improved Cycle Stability and Rate Capability of Graphene Oxide Wrapped Tavorite LiFeSOâ‚„F as Cathode Material for Lithium-Ion Batteries. Guo Z; Zhang D; Qiu H; Zhang T; Fu Q; Zhang L; Yan X; Meng X; Chen G; Wei Y ACS Appl Mater Interfaces; 2015 Jul; 7(25):13972-9. PubMed ID: 26067155 [TBL] [Abstract][Full Text] [Related]
8. Quantitative Operando Visualization of Electrochemical Reactions and Li Ions in All-Solid-State Batteries by STEM-EELS with Hyperspectral Image Analyses. Nomura Y; Yamamoto K; Hirayama T; Ohkawa M; Igaki E; Hojo N; Saitoh K Nano Lett; 2018 Sep; 18(9):5892-5898. PubMed ID: 30130410 [TBL] [Abstract][Full Text] [Related]
9. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
10. Electrolyte Oxidation Pathways in Lithium-Ion Batteries. Rinkel BLD; Hall DS; Temprano I; Grey CP J Am Chem Soc; 2020 Sep; 142(35):15058-15074. PubMed ID: 32697590 [TBL] [Abstract][Full Text] [Related]
11. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress. Xiang Y; Li J; Lei J; Liu D; Xie Z; Qu D; Li K; Deng T; Tang H ChemSusChem; 2016 Nov; 9(21):3023-3039. PubMed ID: 27667306 [TBL] [Abstract][Full Text] [Related]
12. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries. Huang SZ; Jin J; Cai Y; Li Y; Tan HY; Wang HE; Van Tendeloo G; Su BL Nanoscale; 2014 Jun; 6(12):6819-27. PubMed ID: 24828316 [TBL] [Abstract][Full Text] [Related]
13. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte. Ganapathy S; van Eck ER; Kentgens AP; Mulder FM; Wagemaker M Chemistry; 2011 Dec; 17(52):14811-6. PubMed ID: 22120842 [TBL] [Abstract][Full Text] [Related]
14. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte. Yu X; Bi Z; Zhao F; Manthiram A ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547 [TBL] [Abstract][Full Text] [Related]
15. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy. Shimoyamada A; Yamamoto K; Yoshida R; Kato T; Iriyama Y; Hirayama T Microscopy (Oxf); 2015 Dec; 64(6):401-8. PubMed ID: 26337787 [TBL] [Abstract][Full Text] [Related]
16. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors. Sassin MB; Chervin CN; Rolison DR; Long JW Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783 [TBL] [Abstract][Full Text] [Related]
17. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries. Wang SH; Hou SS; Kuo PL; Teng H ACS Appl Mater Interfaces; 2013 Sep; 5(17):8477-85. PubMed ID: 23931907 [TBL] [Abstract][Full Text] [Related]
18. Pore-Scale Simulations of Porous Electrodes of Li-O Wang F; Li X ACS Appl Mater Interfaces; 2018 Aug; 10(31):26222-26232. PubMed ID: 30009605 [TBL] [Abstract][Full Text] [Related]
19. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries. Ye J; Baumgaertel AC; Wang YM; Biener J; Biener MM ACS Nano; 2015 Feb; 9(2):2194-202. PubMed ID: 25491650 [TBL] [Abstract][Full Text] [Related]
20. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]