These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 27599870)
21. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Wang L; Xie R; Chen B; Yu X; Ma J; Li C; Hu Z; Sun X; Xu C; Dong S; Chan TS; Luo J; Cui G; Chen L Nat Commun; 2020 Nov; 11(1):5889. PubMed ID: 33208730 [TBL] [Abstract][Full Text] [Related]
22. Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. Gu Y; Chen D; Jiao X J Phys Chem B; 2005 Sep; 109(38):17901-6. PubMed ID: 16853296 [TBL] [Abstract][Full Text] [Related]
24. (7)Li in situ 1D NMR imaging of a lithium ion battery. Klamor S; Zick K; Oerther T; Schappacher FM; Winter M; Brunklaus G Phys Chem Chem Phys; 2015 Feb; 17(6):4458-65. PubMed ID: 25578436 [TBL] [Abstract][Full Text] [Related]
25. Functional ionic liquids for enhancement of Li-ion transfer: the effect of cation structure on the charge-discharge performance of the Li4Ti5O12 electrode. Shimizu M; Usui H; Sakaguchi H Phys Chem Chem Phys; 2016 Feb; 18(7):5139-47. PubMed ID: 26548773 [TBL] [Abstract][Full Text] [Related]
26. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Lee KT; Jeong S; Cho J Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931 [TBL] [Abstract][Full Text] [Related]
27. Negligible "negative space-charge layer effects" at oxide-electrolyte/electrode interfaces of thin-film batteries. Haruta M; Shiraki S; Suzuki T; Kumatani A; Ohsawa T; Takagi Y; Shimizu R; Hitosugi T Nano Lett; 2015 Mar; 15(3):1498-502. PubMed ID: 25710500 [TBL] [Abstract][Full Text] [Related]
28. Rapid charge-discharge property of Li4Ti5O12-TiO2 nanosheet and nanotube composites as anode material for power lithium-ion batteries. Yi TF; Fang ZK; Xie Y; Zhu YR; Yang SY ACS Appl Mater Interfaces; 2014 Nov; 6(22):20205-13. PubMed ID: 25330170 [TBL] [Abstract][Full Text] [Related]
29. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. Yao F; Pham DT; Lee YH ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707 [TBL] [Abstract][Full Text] [Related]
30. Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes. Song J; Lee H; Choo MJ; Park JK; Kim HT Sci Rep; 2015 Sep; 5():14458. PubMed ID: 26411701 [TBL] [Abstract][Full Text] [Related]
32. In situ Scanning Electron Microscopy of Silicon Anode Reactions in Lithium-Ion Batteries during Charge/Discharge Processes. Chen CY; Sano T; Tsuda T; Ui K; Oshima Y; Yamagata M; Ishikawa M; Haruta M; Doi T; Inaba M; Kuwabata S Sci Rep; 2016 Oct; 6():36153. PubMed ID: 27782200 [TBL] [Abstract][Full Text] [Related]
33. Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques. Zhu J; Lu L; Zeng K ACS Nano; 2013 Feb; 7(2):1666-75. PubMed ID: 23336441 [TBL] [Abstract][Full Text] [Related]
34. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
35. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246 [TBL] [Abstract][Full Text] [Related]
36. Morphology-dependent vanadium oxide nanostructures grown on Ti foil for Li-ion battery. Wei L; Wang Y; Wang Y; Xu M; Zheng G J Colloid Interface Sci; 2014 Oct; 432():297-301. PubMed ID: 25105747 [TBL] [Abstract][Full Text] [Related]
37. Defective Ti2Nb10O27.1: an advanced anode material for lithium-ion batteries. Lin C; Yu S; Zhao H; Wu S; Wang G; Yu L; Li Y; Zhu ZZ; Li J; Lin S Sci Rep; 2015 Dec; 5():17836. PubMed ID: 26632883 [TBL] [Abstract][Full Text] [Related]
38. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery. Yu C; Ganapathy S; de Klerk NJ; Roslon I; van Eck ER; Kentgens AP; Wagemaker M J Am Chem Soc; 2016 Sep; 138(35):11192-201. PubMed ID: 27511442 [TBL] [Abstract][Full Text] [Related]
39. Understanding Li diffusion in Li-intercalation compounds. Van der Ven A; Bhattacharya J; Belak AA Acc Chem Res; 2013 May; 46(5):1216-25. PubMed ID: 22584006 [TBL] [Abstract][Full Text] [Related]
40. Research on Effective Oxygen Window Influencing the Capacity of Li-O2 Batteries. Jiang J; Deng H; Li X; Tong S; He P; Zhou H ACS Appl Mater Interfaces; 2016 Apr; 8(16):10375-82. PubMed ID: 27029322 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]