BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 27600408)

  • 1. Identification and functional study of type III-A CRISPR-Cas systems in clinical isolates of Staphylococcus aureus.
    Cao L; Gao CH; Zhu J; Zhao L; Wu Q; Li M; Sun B
    Int J Med Microbiol; 2016 Dec; 306(8):686-696. PubMed ID: 27600408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Endogenous Staphylococcus aureus CRISPR-Cas System Limits Phage Proliferation and Is Efficiently Excised from the Genome as Part of the SCC
    Mikkelsen K; Bowring JZ; Ng YK; Svanberg Frisinger F; Maglegaard JK; Li Q; Sieber RN; Petersen A; Andersen PS; Rostøl JT; Høyland-Kroghsbo NM; Ingmer H
    Microbiol Spectr; 2023 Aug; 11(4):e0127723. PubMed ID: 37404143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in
    Guan J; Wang W; Sun B
    mSphere; 2017; 2(6):. PubMed ID: 29152580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of 67 Confirmed Clustered Regularly Interspaced Short Palindromic Repeats Loci in 52 Strains of
    Wang Y; Mao T; Li Y; Xiao W; Liang X; Duan G; Yang H
    Front Microbiol; 2021; 12():736565. PubMed ID: 34751223
    [No Abstract]   [Full Text] [Related]  

  • 6. Analysis of the features of 45 identified CRISPR loci in 32 Staphylococcus aureus.
    Yang S; Liu J; Shao F; Wang P; Duan G; Yang H
    Biochem Biophys Res Commun; 2015 Aug; 464(3):894-900. PubMed ID: 26188514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Characterization of Type III-A CRISPR-Cas in a Clinical Human Methicillin-R
    Li Y; Mikkelsen K; Lluch I Grané O; Wang Z; Tang Y; Jiao X; Ingmer H; Høyland-Kroghsbo NM; Li Q
    CRISPR J; 2021 Oct; 4(5):686-698. PubMed ID: 34558981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci.
    Varble A; Meaden S; Barrangou R; Westra ER; Marraffini LA
    Nat Microbiol; 2019 Jun; 4(6):956-963. PubMed ID: 30886355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of CRISPR-Cas systems in Klebsiella genomes.
    Shen J; Lv L; Wang X; Xiu Z; Chen G
    J Basic Microbiol; 2017 Apr; 57(4):325-336. PubMed ID: 28156004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.
    Modell JW; Jiang W; Marraffini LA
    Nature; 2017 Apr; 544(7648):101-104. PubMed ID: 28355179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of CRISPR-Cas system in clinical Staphylococcus epidermidis strains revealed its potential association with bacterial infection sites.
    Li Q; Xie X; Yin K; Tang Y; Zhou X; Chen Y; Xia J; Hu Y; Ingmer H; Li Y; Jiao X
    Microbiol Res; 2016 Dec; 193():103-110. PubMed ID: 27825477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems.
    Burmistrz M; Dudek B; Staniec D; Rodriguez Martinez JI; Bochtler M; Potempa J; Pyrc K
    J Bacteriol; 2015 Aug; 197(16):2631-41. PubMed ID: 26013482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules.
    Carpenter MR; Kalburge SS; Borowski JD; Peters MC; Colwell RR; Boyd EF
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28264992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic Distribution of CRISPR-Cas Systems in
    Kao CY; Lu JJ; Lin LC; Lin HC; Chang SC
    Microbiol Spectr; 2021 Dec; 9(3):e0124721. PubMed ID: 34851176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system.
    Hatoum-Aslan A; Maniv I; Samai P; Marraffini LA
    J Bacteriol; 2014 Jan; 196(2):310-7. PubMed ID: 24187086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species.
    McDonald ND; Regmi A; Morreale DP; Borowski JD; Boyd EF
    BMC Genomics; 2019 Feb; 20(1):105. PubMed ID: 30717668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Characterization of the CRISPR/Cas System in
    Cruz-López EA; Rivera G; Cruz-Hernández MA; Martínez-Vázquez AV; Castro-Escarpulli G; Flores-Magallón R; Vázquez K; Cruz-Pulido WL; Bocanegra-García V
    Front Microbiol; 2021; 12():656996. PubMed ID: 34149645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools.
    Negahdaripour M; Nezafat N; Hajighahramani N; Rahmatabadi SS; Ghasemi Y
    Infect Genet Evol; 2017 Oct; 54():355-373. PubMed ID: 28684374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Not all predicted CRISPR-Cas systems are equal: isolated cas genes and classes of CRISPR like elements.
    Zhang Q; Ye Y
    BMC Bioinformatics; 2017 Feb; 18(1):92. PubMed ID: 28166719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.