BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27600460)

  • 1. Coronary Plaque Characterization Assessed by Optical Coherence Tomography and Plasma Trimethylamine-N-oxide Levels in Patients With Coronary Artery Disease.
    Fu Q; Zhao M; Wang D; Hu H; Guo C; Chen W; Li Q; Zheng L; Chen B
    Am J Cardiol; 2016 Nov; 118(9):1311-1315. PubMed ID: 27600460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma trimethylamine N-oxide is associated with vulnerable plaque characteristics in CAD patients as assessed by optical coherence tomography.
    Liu X; Xie Z; Sun M; Wang X; Li J; Cui J; Zhang F; Yin L; Huang D; Hou J; Tian J; Yu B
    Int J Cardiol; 2018 Aug; 265():18-23. PubMed ID: 29729869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of plasma trimethylamine N-Oxide level with healed culprit plaques examined by optical coherence tomography in patients with ST-Segment elevation myocardial infarction.
    Li J; Sheng Z; Tan Y; Zhou P; Liu C; Zhao H; Song L; Zhou J; Chen R; Chen Y; Yan H
    Nutr Metab Cardiovasc Dis; 2021 Jan; 31(1):145-152. PubMed ID: 33500103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma Trimethylamine N-Oxide as a Novel Biomarker for Plaque Rupture in Patients With ST-Segment-Elevation Myocardial Infarction.
    Tan Y; Sheng Z; Zhou P; Liu C; Zhao H; Song L; Li J; Zhou J; Chen Y; Wang L; Qian H; Sun Z; Qiao S; Xu B; Gao R; Yan H
    Circ Cardiovasc Interv; 2019 Jan; 12(1):e007281. PubMed ID: 30599768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma Pentraxin3 Level Is Associated With Plaque Vulnerability Assessed by Optical Coherence Tomography in Patients With Coronary Artery Disease.
    Tazaki R; Tanigawa J; Fujisaka T; Shibata K; Takeda Y; Ishihara T; Hoshiga M; Hanafusa T; Ishizaka N
    Int Heart J; 2016; 57(1):18-24. PubMed ID: 26673442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circulating trimethylamine N-oxide is correlated with high coronary artery atherosclerotic burden in individuals with newly diagnosed coronary heart disease.
    Bao M; Li H; Li J
    BMC Cardiovasc Disord; 2024 May; 24(1):265. PubMed ID: 38773380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Combined Measure of the Triglyceride Glucose Index and Trimethylamine N-Oxide in Risk Stratification of ST-Segment Elevation Myocardial Infarction Patients with High-Risk Plaque Features Defined by Optical Coherence Tomography: A Substudy of the OCTAMI Registry Study.
    Zhao X; Zhao H; Chen R; Li J; Zhou J; Li N; Yan S; Liu C; Zhou P; Chen Y; Song L; Yan H
    Vasc Health Risk Manag; 2024; 20():141-155. PubMed ID: 38567028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of circulating levels of neopterin with non-culprit plaque vulnerability in CAD patients an angiogram, optical coherent tomography and intravascular ultrasound study.
    Sun Y; He J; Tian J; Xie Z; Wang C; Yu B
    Atherosclerosis; 2015 Jul; 241(1):138-42. PubMed ID: 25982822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma levels of trimethylamine-N-oxide can be increased with 'healthy' and 'unhealthy' diets and do not correlate with the extent of atherosclerosis but with plaque instability.
    Koay YC; Chen YC; Wali JA; Luk AWS; Li M; Doma H; Reimark R; Zaldivia MTK; Habtom HT; Franks AE; Fusco-Allison G; Yang J; Holmes A; Simpson SJ; Peter K; O'Sullivan JF
    Cardiovasc Res; 2021 Jan; 117(2):435-449. PubMed ID: 32267921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of optical coherence tomography and intravascular ultrasound for evaluation of coronary lipid-rich atherosclerotic plaque progression and regression.
    Xie Z; Tian J; Ma L; Du H; Dong N; Hou J; He J; Dai J; Liu X; Pan H; Liu Y; Yu B
    Eur Heart J Cardiovasc Imaging; 2015 Dec; 16(12):1374-80. PubMed ID: 25911116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma Trimethylamine N-Oxide, a Gut Microbe-Generated Phosphatidylcholine Metabolite, Is Associated With Atherosclerotic Burden.
    Senthong V; Li XS; Hudec T; Coughlin J; Wu Y; Levison B; Wang Z; Hazen SL; Tang WH
    J Am Coll Cardiol; 2016 Jun; 67(22):2620-8. PubMed ID: 27256833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of cholesterol metabolism on coronary plaque vulnerability of target vessels: a combined analysis of virtual histology intravascular ultrasound and optical coherence tomography.
    Nasu K; Terashima M; Habara M; Ko E; Ito T; Yokota D; Ishizuka S; Kurita T; Kimura M; Kinoshita Y; Asakura Y; Tsuchikane E; Katoh O; Suzuki T
    JACC Cardiovasc Interv; 2013 Jul; 6(7):746-55. PubMed ID: 23769651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Difference of ruptured plaque morphology between asymptomatic coronary artery disease and non-ST elevation acute coronary syndrome patients: an optical coherence tomography study.
    Shimamura K; Ino Y; Kubo T; Nishiguchi T; Tanimoto T; Ozaki Y; Satogami K; Orii M; Shiono Y; Komukai K; Yamano T; Matsuo Y; Kitabata H; Yamaguchi T; Hirata K; Tanaka A; Imanishi T; Akasaka T
    Atherosclerosis; 2014 Aug; 235(2):532-7. PubMed ID: 24953494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association Between Plasma Trimethylamine N-oxide and Neoatherosclerosis in Patients With Very Late Stent Thrombosis.
    Tan Y; Zhou J; Liu C; Zhou P; Sheng Z; Li J; Chen R; Song L; Zhao H; Xu B; Gao R; Yan H
    Can J Cardiol; 2020 Aug; 36(8):1252-1260. PubMed ID: 32595007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plaque vulnerability at non-culprit lesions in obese patients with coronary artery disease: Frequency-domain optical coherence tomography analysis.
    Kataoka Y; Hammadah M; Puri R; Duggal B; Uno K; Kapadia SR; Tuzcu EM; Nissen SE; Nicholls SJ
    Eur J Prev Cardiol; 2015 Oct; 22(10):1331-9. PubMed ID: 26232281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of serum trans fatty acids concentration on plaque vulnerability in patients with coronary artery disease: Assessment via optical coherence tomography.
    Nagasawa Y; Shinke T; Toh R; Ishida T; Otake H; Takaya T; Sugiyama D; Toba T; Kuroda M; Takahashi H; Terashita D; Tahara N; Shinkura Y; Uzu K; Kashiwagi D; Kuroda K; Nagano Y; Yamamoto H; Yanaka K; Tsukiyama Y; Hirata KI
    Atherosclerosis; 2017 Oct; 265():312-317. PubMed ID: 28697847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plaque microstructures in patients with coronary artery disease who achieved very low low-density lipoprotein cholesterol levels.
    Kataoka Y; Hammadah M; Puri R; Duggal B; Uno K; Kapadia SR; Murat Tuzcu E; Nissen SE; Nicholls SJ
    Atherosclerosis; 2015 Oct; 242(2):490-5. PubMed ID: 26298740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: a comparison to optical coherence tomography.
    Nakazato R; Otake H; Konishi A; Iwasaki M; Koo BK; Fukuya H; Shinke T; Hirata K; Leipsic J; Berman DS; Min JK
    Eur Heart J Cardiovasc Imaging; 2015 Apr; 16(4):373-9. PubMed ID: 25246503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small HDL subclass is associated with coronary plaque stability: An optical coherence tomography study in patients with coronary artery disease.
    Wang X; Liu X; Xie Z; Tian J; Huang X; Zhang R; Chen S; Hou J; Yu B
    J Clin Lipidol; 2019; 13(2):326-334.e2. PubMed ID: 30665770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Associations among serum trimethylamine-N-oxide (TMAO) levels, kidney function and infarcted coronary artery number in patients undergoing cardiovascular surgery: a cross-sectional study.
    Mafune A; Iwamoto T; Tsutsumi Y; Nakashima A; Yamamoto I; Yokoyama K; Yokoo T; Urashima M
    Clin Exp Nephrol; 2016 Oct; 20(5):731-739. PubMed ID: 26676906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.