These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27600474)

  • 1. Effect of Low-Intensity Pulsed Ultrasound after Mesenchymal Stromal Cell Injection to Treat Osteochondral Defects: An In Vivo Study.
    Yamaguchi S; Aoyama T; Ito A; Nagai M; Iijima H; Tajino J; Zhang X; Wataru K; Kuroki H
    Ultrasound Med Biol; 2016 Dec; 42(12):2903-2913. PubMed ID: 27600474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Exercise on the Early Stages of Mesenchymal Stromal Cell-Induced Cartilage Repair in a Rat Osteochondral Defect Model.
    Yamaguchi S; Aoyama T; Ito A; Nagai M; Iijima H; Tajino J; Zhang X; Kiyan W; Kuroki H
    PLoS One; 2016; 11(3):e0151580. PubMed ID: 26968036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination therapy with intra-articular injection of mesenchymal stem cells and articulated joint distraction for repair of a chronic osteochondral defect in the rabbit.
    Harada Y; Nakasa T; Mahmoud EE; Kamei G; Adachi N; Deie M; Ochi M
    J Orthop Res; 2015 Oct; 33(10):1466-73. PubMed ID: 26174695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological effects of mesenchymal stem cells and pulsed ultrasound on condylar growth in rats: a pilot study.
    Oyonarte R; Becerra D; Díaz-Zúñiga J; Rojas V; Carrion F
    Aust Orthod J; 2013 May; 29(1):3-12. PubMed ID: 23785932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique].
    Zhang W; Lian Q; Li D; Wang K; Jin Z; Bian W; Liu Y; He J; Wang L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):318-24. PubMed ID: 24844012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model.
    Lam J; Lu S; Lee EJ; Trachtenberg JE; Meretoja VV; Dahlin RL; van den Beucken JJ; Tabata Y; Wong ME; Jansen JA; Mikos AG; Kasper FK
    Osteoarthritis Cartilage; 2014 Sep; 22(9):1291-300. PubMed ID: 25008204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of allogeneic chondrocytes-calcium alginate gel composite under intervention of low intensive pulsed ultrasound for repairing rabbit knee articular cartilage defect].
    Guo Y; Ma Y; Dong R; Liu S; Tu J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Aug; 27(8):928-34. PubMed ID: 24171346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parathyroid hormone [1-34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects in vivo.
    Orth P; Cucchiarini M; Zurakowski D; Menger MD; Kohn DM; Madry H
    Osteoarthritis Cartilage; 2013 Apr; 21(4):614-24. PubMed ID: 23353669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpressing Runx2 of BMSCs Improves the Repairment of knee Cartilage Defects.
    Hu J; Zou WZ; Li L; Shi ZS; Liu XZ; Cai HT; Yang AF; Sun DM; Xu LL; Yang Y; Li ZH
    Curr Gene Ther; 2020; 20(5):395-404. PubMed ID: 33019929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coculturing of mesenchymal stem cells of different sources improved regenerative capability of osteochondral defect in the mature rabbit: An in vivo study.
    Mahmoud EE; Adachi N; Mawas AS; Gaarour OS; Ochi M
    J Orthop Surg (Hong Kong); 2019; 27(2):2309499019839850. PubMed ID: 30955439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-intensity pulsed ultrasound promotes mesenchymal stem cell transplantation-based articular cartilage regeneration via inhibiting the TNF signaling pathway.
    Chen Y; Yang H; Wang Z; Zhu R; Cheng L; Cheng Q
    Stem Cell Res Ther; 2023 Apr; 14(1):93. PubMed ID: 37069673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HA-g-CS Implant and Moderate-intensity Exercise Stimulate Subchondral Bone Remodeling and Promote Repair of Osteochondral Defects in Mice.
    Shen K; Liu X; Qin H; Chai Y; Wang L; Yu B
    Int J Med Sci; 2021; 18(16):3808-3820. PubMed ID: 34790057
    [No Abstract]   [Full Text] [Related]  

  • 13. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing of Intra-Articular Injection of Synovial Mesenchymal Stem Cells Affects Cartilage Restoration in a Partial Thickness Cartilage Defect Model in Rats.
    Enomoto T; Akagi R; Ogawa Y; Yamaguchi S; Hoshi H; Sasaki T; Sato Y; Nakagawa R; Kimura S; Ohtori S; Sasho T
    Cartilage; 2020 Jan; 11(1):122-129. PubMed ID: 29989441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of in vitro chondrogenic differentiation of autologous mesenchymal stem cells on cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint.
    Chen K; Man C; Zhang B; Hu J; Zhu SS
    Int J Oral Maxillofac Surg; 2013 Feb; 42(2):240-8. PubMed ID: 22763137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2).
    Maehara H; Sotome S; Yoshii T; Torigoe I; Kawasaki Y; Sugata Y; Yuasa M; Hirano M; Mochizuki N; Kikuchi M; Shinomiya K; Okawa A
    J Orthop Res; 2010 May; 28(5):677-86. PubMed ID: 19918893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does low-intensity pulsed ultrasound treatment repair articular cartilage injury? A rabbit model study.
    Yang SW; Kuo CL; Chang SJ; Chen PC; Lin YT; Manousakas I; Kuo SM
    BMC Musculoskelet Disord; 2014 Feb; 15():36. PubMed ID: 24507771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Mesenchymal Stem Cells Densities When Injected as Suspension in Joints with Osteochondral Defects.
    Mahmoud EE; Kamei N; Kamei G; Nakasa T; Shimizu R; Harada Y; Adachi N; Misk NA; Ochi M
    Cartilage; 2019 Jan; 10(1):61-69. PubMed ID: 28486813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Low-Intensity Pulsed Ultrasound After Autologous Adipose-Derived Stromal Cell Transplantation for Bone-Tendon Healing in a Rabbit Model.
    Chen C; Zhang T; Liu F; Qu J; Chen Y; Fan S; Chen H; Sun L; Zhao C; Hu J; Lu H
    Am J Sports Med; 2019 Mar; 47(4):942-953. PubMed ID: 30870031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Intensity Pulsed Ultrasound Promotes Autophagy-Mediated Migration of Mesenchymal Stem Cells and Cartilage Repair.
    Xia P; Wang X; Wang Q; Wang X; Lin Q; Cheng K; Li X
    Cell Transplant; 2021; 30():963689720986142. PubMed ID: 33412895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.