These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 27600494)

  • 1. Shaping photomechanical effects in tissue ablation using 355 nm laser pulses.
    Herzog A; Steinberg I; Ishaaya AA
    J Biophotonics; 2017 Oct; 10(10):1262-1270. PubMed ID: 27600494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myocardium tissue ablation with high-peak-power nanosecond 1,064- and 532-nm pulsed lasers: influence of laser-induced plasma.
    Ogura M; Sato S; Ishihara M; Kawauchi S; Arai T; Matsui T; Kurita A; Kikuchi M; Ashida H; Obara M
    Lasers Surg Med; 2002; 31(2):136-41. PubMed ID: 12210598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced laser thrombolysis with photomechanical drug delivery: an in vitro study.
    Shangguan HQ; Gregory KW; Casperson LW; Prahl SA
    Lasers Surg Med; 1998; 23(3):151-60. PubMed ID: 9779649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hollow-waveguide-based nanosecond, near-infrared pulsed laser ablation of tissue.
    Sato S; Shi YW; Matsuura Y; Miyagi M; Ashida H
    Lasers Surg Med; 2005 Aug; 37(2):149-54. PubMed ID: 16097010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of multiple-sweeping on ablation performance during ex vivo laser nephrectomy.
    Oh J; Nam SY; Lee YW; Kang HW
    Lasers Surg Med; 2016 Aug; 48(6):616-23. PubMed ID: 26990980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment.
    Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY
    Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones.
    Hardy LA; Kennedy JD; Wilson CR; Irby PB; Fried NM
    J Biophotonics; 2017 Oct; 10(10):1240-1249. PubMed ID: 27507305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater.
    Lü T; Xiao Q; Xia D; Ruan K; Li Z
    J Biomed Opt; 2010; 15(4):048002. PubMed ID: 20799845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of excimer laser (308 nm) ablation of the human lens nucleus in air and saline with a fiber optic delivery system.
    Martinez M; Maguen E; Bardenstein D; Duffy M; Yoser S; Papaioannou T; Grundfest W
    Refract Corneal Surg; 1992; 8(5):368-74. PubMed ID: 1450118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cavitation bubble interaction with temporally separated fs-laser pulses.
    Tinne N; Knoop G; Kallweit N; Veith S; Bleeker S; Lubatschowski H; Krüger A; Ripken T
    J Biomed Opt; 2014 Apr; 19(4):048001. PubMed ID: 24781592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation.
    Jansen ED; Asshauer T; Frenz M; Motamedi M; Delacrétaz G; Welch AJ
    Lasers Surg Med; 1996; 18(3):278-93. PubMed ID: 8778524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angular effect of optical fiber movement on endoscopic laser prostatectomy.
    Rajabhandharaks D; Kang HW; Oh J
    Lasers Surg Med; 2012 Oct; 44(8):653-63. PubMed ID: 22899315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncontact tissue ablation by holmium:YSGG laser pulses in blood.
    van Leeuwen TG; van der Veen MJ; Verdaasdonk RM; Borst C
    Lasers Surg Med; 1991; 11(1):26-34. PubMed ID: 1997777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C.
    Oraevsky AA; Jacques SL; Esenaliev RO; Tittel FK
    Lasers Surg Med; 1996; 18(3):231-40. PubMed ID: 8778517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe.
    Yu PK; Miller J; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1587-93. PubMed ID: 16565396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina.
    Vogel A; Capon MR; Asiyo-Vogel MN; Birngruber R
    Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):3032-44. PubMed ID: 8206720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro investigation of wavelength-dependent tissue ablation: laser prostatectomy between 532 nm and 2.01 microm.
    Kang HW; Kim J; Peng YS
    Lasers Surg Med; 2010 Mar; 42(3):237-44. PubMed ID: 20333741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous wave laser ablation of tissue: analysis of thermal and mechanical events.
    LeCarpentier GL; Motamedi M; McMath LP; Rastegar S; Welch AJ
    IEEE Trans Biomed Eng; 1993 Feb; 40(2):188-200. PubMed ID: 8319970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone ablation without thermal or acoustic mechanical injury via a novel picosecond infrared laser (PIRL).
    Jowett N; Wöllmer W; Reimer R; Zustin J; Schumacher U; Wiseman PW; Mlynarek AM; Böttcher A; Dalchow CV; Lörincz BB; Knecht R; Miller RJ
    Otolaryngol Head Neck Surg; 2014 Mar; 150(3):385-93. PubMed ID: 24376121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.