BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 27600536)

  • 1. Morphogenic Regulators
    Lowe K; Wu E; Wang N; Hoerster G; Hastings C; Cho MJ; Scelonge C; Lenderts B; Chamberlin M; Cushatt J; Wang L; Ryan L; Khan T; Chow-Yiu J; Hua W; Yu M; Banh J; Bao Z; Brink K; Igo E; Rudrappa B; Shamseer PM; Bruce W; Newman L; Shen B; Zheng P; Bidney D; Falco C; Register J; Zhao ZY; Xu D; Jones T; Gordon-Kamm W
    Plant Cell; 2016 Sep; 28(9):1998-2015. PubMed ID: 27600536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize Transformation Using the Morphogenic Genes Baby Boom and Wuschel2.
    Jones T; Lowe K; Hoerster G; Anand A; Wu E; Wang N; Arling M; Lenderts B; Gordon-Kamm W
    Methods Mol Biol; 2019; 1864():81-93. PubMed ID: 30415330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of Recalcitrant Sorghum Varieties Facilitated by Baby Boom and Wuschel2.
    Nelson-Vasilchik K; Hague J; Mookkan M; Zhang ZJ; Kausch A
    Curr Protoc Plant Biol; 2018 Dec; 3(4):e20076. PubMed ID: 30369099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid genotype "independent"
    Lowe K; La Rota M; Hoerster G; Hastings C; Wang N; Chamberlin M; Wu E; Jones T; Gordon-Kamm W
    In Vitro Cell Dev Biol Plant; 2018; 54(3):240-252. PubMed ID: 29780216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2.
    Mookkan M; Nelson-Vasilchik K; Hague J; Zhang ZJ; Kausch AP
    Plant Cell Rep; 2017 Sep; 36(9):1477-1491. PubMed ID: 28681159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrobacterium-Mediated Immature Embryo Transformation of Recalcitrant Maize Inbred Lines Using Morphogenic Genes.
    Masters A; Kang M; McCaw M; Zobrist JD; Gordon-Kamm W; Jones T; Wang K
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphogenic Regulator-Mediated Transformation of Maize Inbred B73.
    Mookkan M; Nelson-Vasilchik K; Hague J; Kausch A; Zhang ZJ
    Curr Protoc Plant Biol; 2018 Dec; 3(4):e20075. PubMed ID: 30369097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum.
    Wang N; Ryan L; Sardesai N; Wu E; Lenderts B; Lowe K; Che P; Anand A; Worden A; van Dyk D; Barone P; Svitashev S; Jones T; Gordon-Kamm W
    Nat Plants; 2023 Feb; 9(2):255-270. PubMed ID: 36759580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient Gene Excision System in Maize.
    Wang N; Arling M; Hoerster G; Ryan L; Wu E; Lowe K; Gordon-Kamm W; Jones TJ; Chilcoat ND; Anand A
    Front Plant Sci; 2020; 11():1298. PubMed ID: 32983193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized Transformation and Gene Editing of the B104 Public Maize Inbred by Improved Tissue Culture and Use of Morphogenic Regulators.
    Aesaert S; Impens L; Coussens G; Van Lerberge E; Vanderhaeghen R; Desmet L; Vanhevel Y; Bossuyt S; Wambua AN; Van Lijsebettens M; Inzé D; De Keyser E; Jacobs TB; Karimi M; Pauwels L
    Front Plant Sci; 2022; 13():883847. PubMed ID: 35528934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Transformation of Recalcitrant Upland Switchgrass Using Morphogenic Genes.
    Xu N; Kang M; Zobrist JD; Wang K; Fei SZ
    Front Plant Sci; 2021; 12():781565. PubMed ID: 35211127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and highly efficient morphogenic gene-mediated hexaploid wheat transformation.
    Johnson K; Cao Chu U; Anthony G; Wu E; Che P; Jones TJ
    Front Plant Sci; 2023; 14():1151762. PubMed ID: 37063202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium- and Biolistic-Mediated Transformation of Maize B104 Inbred.
    Raji JA; Frame B; Little D; Santoso TJ; Wang K
    Methods Mol Biol; 2018; 1676():15-40. PubMed ID: 28986902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum.
    Che P; Wu E; Simon MK; Anand A; Lowe K; Gao H; Sigmund AL; Yang M; Albertsen MC; Gordon-Kamm W; Jones TJ
    Commun Biol; 2022 Apr; 5(1):344. PubMed ID: 35410430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed.
    Hiei Y; Komari T
    Nat Protoc; 2008; 3(5):824-34. PubMed ID: 18451790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High efficiency Agrobacterium-mediated site-specific gene integration in maize utilizing the FLP-FRT recombination system.
    Anand A; Wu E; Li Z; TeRonde S; Arling M; Lenderts B; Mutti JS; Gordon-Kamm W; Jones TJ; Chilcoat ND
    Plant Biotechnol J; 2019 Aug; 17(8):1636-1645. PubMed ID: 30706638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust genetic transformation of sorghum (
    Belide S; Vanhercke T; Petrie JR; Singh SP
    Plant Methods; 2017; 13():109. PubMed ID: 29234458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enabling genome editing in tropical maize lines through an improved, morphogenic regulator-assisted transformation protocol.
    Hernandes-Lopes J; Pinto MS; Vieira LR; Monteiro PB; Gerasimova SV; Nonato JVA; Bruno MHF; Vikhorev A; Rausch-Fernandes F; Gerhardt IR; Pauwels L; Arruda P; Dante RA; Yassitepe JECT
    Front Genome Ed; 2023; 5():1241035. PubMed ID: 38144709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Maize Transformation and Targeted Mutagenesis through the Assistance of Non-Integrating
    Kang M; Lee K; Ji Q; Grosic S; Wang K
    Plants (Basel); 2023 Jul; 12(15):. PubMed ID: 37570953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of
    Liu Q; Zhang XS; Su YH
    aBIOTECH; 2023 Dec; 4(4):386-388. PubMed ID: 38106431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.