BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 27600536)

  • 21. Transformation of Teosinte (
    Zobrist JD; Martin-Ortigosa S; Lee K; Azanu MK; Ji Q; Wang K
    Front Plant Sci; 2021; 12():773419. PubMed ID: 34956270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Cas9-mediated tetra-allelic mutation of the 'Green Revolution' SEMIDWARF-1 (SD-1) gene confers lodging resistance in tef (Eragrostis tef).
    Beyene G; Chauhan RD; Villmer J; Husic N; Wang N; Gebre E; Girma D; Chanyalew S; Assefa K; Tabor G; Gehan M; McGrone M; Yang M; Lenderts B; Schwartz C; Gao H; Gordon-Kamm W; Taylor NJ; MacKenzie DJ
    Plant Biotechnol J; 2022 Sep; 20(9):1716-1729. PubMed ID: 35560779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens.
    Hiei Y; Ishida Y; Komari T
    Front Plant Sci; 2014; 5():628. PubMed ID: 25426132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Agrobacterium-mediated maize transformation: immature embryos versus callus.
    Sidorov V; Duncan D
    Methods Mol Biol; 2009; 526():47-58. PubMed ID: 19378003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts.
    Frame BR; McMurray JM; Fonger TM; Main ML; Taylor KW; Torney FJ; Paz MM; Wang K
    Plant Cell Rep; 2006 Oct; 25(10):1024-34. PubMed ID: 16710703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Agrobacterium-mediated transformation of Sorghum bicolor using immature embryos.
    Gurel S; Gurel E; Miller TI; Lemaux PG
    Methods Mol Biol; 2012; 847():109-22. PubMed ID: 22351003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Agrobacterium tumefaciens-mediated genetic transformation of cereals using immature embryos.
    Shrawat AK; Good AG
    Methods Mol Biol; 2011; 710():355-72. PubMed ID: 21207280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of GRF-GIF chimeras and a ternary vector system to improve maize (Zea mays L.) transformation frequency.
    Vandeputte W; Coussens G; Aesaert S; Haeghebaert J; Impens L; Karimi M; Debernardi JM; Pauwels L
    Plant J; 2024 Jun; ():. PubMed ID: 38923048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agrobacterium-Mediated Genetic Transformation of Wild Oryza Species Using Immature Embryos.
    Shimizu-Sato S; Tsuda K; Nosaka-Takahashi M; Suzuki T; Ono S; Ta KN; Yoshida Y; Nonomura KI; Sato Y
    Rice (N Y); 2020 Jun; 13(1):33. PubMed ID: 32495182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue culture protocols for gene transfer and editing in maize (
    Ishida Y; Hiei Y; Komari T
    Plant Biotechnol (Tokyo); 2020 Jun; 37(2):121-128. PubMed ID: 32821218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rice, indica (Oryza sativa L.).
    Hiei Y; Ishida Y; Komari T
    Methods Mol Biol; 2015; 1223():155-67. PubMed ID: 25300838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient genetic transformation of Sorghum using a visual screening marker.
    Gao Z; Jayaraj J; Muthukrishnan S; Claflin L; Liang GH
    Genome; 2005 Apr; 48(2):321-33. PubMed ID: 15838555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Commercial scale genetic transformation of mature seed embryo explants in maize.
    Ye X; Shrawat A; Williams E; Rivlin A; Vaghchhipawala Z; Moeller L; Kumpf J; Subbarao S; Martinell B; Armstrong C; Saltarikos MA; Somers D; Chen Y
    Front Plant Sci; 2022; 13():1056190. PubMed ID: 36523626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogenetically Distant
    Chahal LS; Conner JA; Ozias-Akins P
    Front Plant Sci; 2022; 13():863908. PubMed ID: 35909735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.
    Singh RK; Prasad M
    Protoplasma; 2016 May; 253(3):691-707. PubMed ID: 26660352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved Transformation and Regeneration of
    Liang Y; Biswas S; Kim B; Bailey-Serres J; Septiningsih EM
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a Transformable Fast-Flowering Mini-Maize as a Tool for Maize Gene Editing.
    McCaw ME; Lee K; Kang M; Zobrist JD; Azanu MK; Birchler JA; Wang K
    Front Genome Ed; 2020; 2():622227. PubMed ID: 34713243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overexpression of maize GOLDEN2 in rice and maize calli improves regeneration by activating chloroplast development.
    Luo W; Tan J; Li T; Feng Z; Ding Z; Xie X; Chen Y; Chen L; Liu YG; Zhu Q; Guo J
    Sci China Life Sci; 2023 Feb; 66(2):340-349. PubMed ID: 35982378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression of the Transcription Factor
    Kong J; Martin-Ortigosa S; Finer J; Orchard N; Gunadi A; Batts LA; Thakare D; Rush B; Schmitz O; Stuiver M; Olhoft P; Pacheco-Villalobos D
    Front Plant Sci; 2020; 11():572319. PubMed ID: 33154762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biolistic-mediated transformation protocols for maize and pearl millet using pre-cultured immature zygotic embryos and embryogenic tissue.
    O'Kennedy MM; Stark HC; Dube N
    Methods Mol Biol; 2011; 710():343-54. PubMed ID: 21207279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.