These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27600626)

  • 1. Protein Arrangement Effects on the Exciton Dynamics in the PE555 Complex.
    Chandrasekaran S; Pothula KR; Kleinekathöfer U
    J Phys Chem B; 2017 Apr; 121(15):3228-3236. PubMed ID: 27600626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Electronic Fluctuations and Their Description on the Exciton Dynamics in the Light-Harvesting Complex PE545.
    Aghtar M; Kleinekathöfer U; Curutchet C; Mennucci B
    J Phys Chem B; 2017 Feb; 121(6):1330-1339. PubMed ID: 28112938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy flow in the cryptophyte PE545 antenna is directed by bilin pigment conformation.
    Curutchet C; Novoderezhkin VI; Kongsted J; Muñoz-Losa A; van Grondelle R; Scholes GD; Mennucci B
    J Phys Chem B; 2013 Apr; 117(16):4263-73. PubMed ID: 22992117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QM/MM modeling of environmental effects on electronic transitions of the FMO complex.
    Gao J; Shi WJ; Ye J; Wang X; Hirao H; Zhao Y
    J Phys Chem B; 2013 Apr; 117(13):3488-95. PubMed ID: 23480507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton transport in the PE545 complex: insight from atomistic QM/MM-based quantum master equations and elastic network models.
    Pouyandeh S; Iubini S; Jurinovich S; Omar Y; Mennucci B; Piazza F
    Phys Biol; 2017 Nov; 14(6):066001. PubMed ID: 28976354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis of the exciton-phonon interactions in the PE545 light-harvesting complex.
    Viani L; Corbella M; Curutchet C; O'Reilly EJ; Olaya-Castro A; Mennucci B
    Phys Chem Chem Phys; 2014 Aug; 16(30):16302-11. PubMed ID: 24978840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers.
    Madjet ME; Abdurahman A; Renger T
    J Phys Chem B; 2006 Aug; 110(34):17268-81. PubMed ID: 16928026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent atomistic view on the electronic relaxation in light-harvesting system II.
    Olbrich C; Kleinekathöfer U
    J Phys Chem B; 2010 Sep; 114(38):12427-37. PubMed ID: 20809619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coulomb couplings in solubilised light harvesting complex II (LHCII): challenging the ideal dipole approximation from TDDFT calculations.
    López-Tarifa P; Liguori N; van den Heuvel N; Croce R; Visscher L
    Phys Chem Chem Phys; 2017 Jul; 19(28):18311-18320. PubMed ID: 28678259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a quantitative description of excitonic couplings in photosynthetic pigment-protein complexes: quantum chemistry driven multiscale approaches.
    Friedl C; Fedorov DG; Renger T
    Phys Chem Chem Phys; 2022 Feb; 24(8):5014-5038. PubMed ID: 35142765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid QM/MM study of FMO complex with polarized protein-specific charge.
    Jia X; Mei Y; Zhang JZ; Mo Y
    Sci Rep; 2015 Nov; 5():17096. PubMed ID: 26611739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal mode analysis of the spectral density of the Fenna-Matthews-Olson light-harvesting protein: how the protein dissipates the excess energy of excitons.
    Renger T; Klinger A; Steinecker F; Schmidt am Busch M; Numata J; Müh F
    J Phys Chem B; 2012 Dec; 116(50):14565-80. PubMed ID: 23163520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-Principles Models for Biological Light-Harvesting: Phycobiliprotein Complexes from Cryptophyte Algae.
    Lee MK; Bravaya KB; Coker DF
    J Am Chem Soc; 2017 Jun; 139(23):7803-7814. PubMed ID: 28521106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproducing the low-temperature excitation energy transfer dynamics of phycoerythrin 545 light-harvesting complex with a structure-based model Hamiltonian.
    Tong Z; Huai Z; Mei Y; Mo Y
    J Chem Phys; 2020 Apr; 152(13):135101. PubMed ID: 32268735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes.
    Caram JR; Engel GS
    Faraday Discuss; 2011; 153():93-104; discussion 189-212. PubMed ID: 22452075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of non-conservative circular dichroism of the CP29 antenna complex of photosystem II.
    Lindorfer D; Müh F; Renger T
    Phys Chem Chem Phys; 2017 Mar; 19(11):7524-7536. PubMed ID: 28247880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.
    Huo P; Coker DF
    J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open quantum system parameters for light harvesting complexes from molecular dynamics.
    Wang X; Ritschel G; Wüster S; Eisfeld A
    Phys Chem Chem Phys; 2015 Oct; 17(38):25629-41. PubMed ID: 26372495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Fenna-Matthews-Olson protein revisited: a fully polarizable (TD)DFT/MM description.
    Jurinovich S; Curutchet C; Mennucci B
    Chemphyschem; 2014 Oct; 15(15):3194-204. PubMed ID: 25080315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Characterization of the Spectral Density of the Water-Soluble Chlorophyll-Binding Protein from Combined Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulations.
    Rosnik AM; Curutchet C
    J Chem Theory Comput; 2015 Dec; 11(12):5826-37. PubMed ID: 26610205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.