These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 27600710)
21. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil. Hayden HL; Mele PM; Bougoure DS; Allan CY; Norng S; Piceno YM; Brodie EL; Desantis TZ; Andersen GL; Williams AL; Hovenden MJ Environ Microbiol; 2012 Dec; 14(12):3081-96. PubMed ID: 23039205 [TBL] [Abstract][Full Text] [Related]
22. Methyl fluoride affects methanogenesis rather than community composition of methanogenic archaea in a rice field soil. Daebeler A; Gansen M; Frenzel P PLoS One; 2013; 8(1):e53656. PubMed ID: 23341965 [TBL] [Abstract][Full Text] [Related]
23. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. Ma K; Lu Y FEMS Microbiol Ecol; 2011 Mar; 75(3):446-56. PubMed ID: 21198683 [TBL] [Abstract][Full Text] [Related]
24. Colonization of rice roots with methanogenic archaea controls photosynthesis-derived methane emission. Pump J; Pratscher J; Conrad R Environ Microbiol; 2015 Jul; 17(7):2254-60. PubMed ID: 25367104 [TBL] [Abstract][Full Text] [Related]
25. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Ikeda S; Sasaki K; Okubo T; Yamashita A; Terasawa K; Bao Z; Liu D; Watanabe T; Murase J; Asakawa S; Eda S; Mitsui H; Sato T; Minamisawa K Microbes Environ; 2014; 29(1):50-9. PubMed ID: 24463575 [TBL] [Abstract][Full Text] [Related]
26. [Response of Organic Carbon Mineralization to Nitrogen Addition in Micro-aerobic and Anaerobic Layers of Paddy Soil]. Mao WQ; Xia YH; Ma C; Zhu GX; Wang ZC; Tu Q; Chen XB; Wu JS; Su YR Huan Jing Ke Xue; 2023 Nov; 44(11):6248-6256. PubMed ID: 37973107 [TBL] [Abstract][Full Text] [Related]
27. Effect of different ammonia concentrations on community succession of ammonia-oxidizing microorganisms in a simulated paddy soil column. Baolan H; Shuai L; Lidong S; Ping Z; Xiangyang X; Liping L PLoS One; 2012; 7(8):e44122. PubMed ID: 22952893 [TBL] [Abstract][Full Text] [Related]
28. Effect of rice-straw biochar on nitrous oxide emissions from paddy soils under elevated CO Sun X; Han X; Ping F; Zhang L; Zhang K; Chen M; Wu W Sci Total Environ; 2018 Jul; 628-629():1009-1016. PubMed ID: 30045525 [TBL] [Abstract][Full Text] [Related]
29. [Effects of Gypsum on CH Hu XY; Xiang QJ; Mu ZJ Huan Jing Ke Xue; 2018 Aug; 39(8):3894-3900. PubMed ID: 29998699 [TBL] [Abstract][Full Text] [Related]
30. Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Lueders T; Chin KJ; Conrad R; Friedrich M Environ Microbiol; 2001 Mar; 3(3):194-204. PubMed ID: 11321536 [TBL] [Abstract][Full Text] [Related]
31. [Response of Soil Nitrifier and Denitrifier Community and Activity to Elevated Atmospheric CO Liu Y; Wang GL; Li LQ; Pan GX Huan Jing Ke Xue; 2017 Mar; 38(3):1245-1252. PubMed ID: 29965600 [TBL] [Abstract][Full Text] [Related]
32. Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach. Bhattacharyya P; Roy KS; Das M; Ray S; Balachandar D; Karthikeyan S; Nayak AK; Mohapatra T Sci Total Environ; 2016 Jan; 542(Pt A):886-98. PubMed ID: 26556753 [TBL] [Abstract][Full Text] [Related]
33. Role of methanogenesis and methanotrophy in CH Wang Y; Hu Z; Gu B; Xing J; Liu C; Liu T; Zhao S; Zhang X; Zhu L; Xu Z Sci Total Environ; 2024 Nov; 951():175466. PubMed ID: 39142399 [TBL] [Abstract][Full Text] [Related]
34. Responses of soil methanogens, methanotrophs, and methane fluxes to land-use conversion and fertilization in a hilly red soil region of southern China. Liu H; Wu X; Li Z; Wang Q; Liu D; Liu G Environ Sci Pollut Res Int; 2017 Mar; 24(9):8731-8743. PubMed ID: 28213705 [TBL] [Abstract][Full Text] [Related]
35. Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community. Breidenbach B; Blaser MB; Klose M; Conrad R Environ Microbiol; 2016 Sep; 18(9):2868-85. PubMed ID: 26337675 [TBL] [Abstract][Full Text] [Related]
36. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Conrad R; Klose M; Noll M Environ Microbiol; 2009 Jul; 11(7):1844-53. PubMed ID: 19508556 [TBL] [Abstract][Full Text] [Related]
37. Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Chin KJ; Lukow T; Conrad R Appl Environ Microbiol; 1999 Jun; 65(6):2341-9. PubMed ID: 10347011 [TBL] [Abstract][Full Text] [Related]
38. Biochar decreases methanogenic archaea abundance and methane emissions in a flooded paddy soil. Qi L; Ma Z; Chang SX; Zhou P; Huang R; Wang Y; Wang Z; Gao M Sci Total Environ; 2021 Jan; 752():141958. PubMed ID: 32892054 [TBL] [Abstract][Full Text] [Related]
39. Coupled anaerobic methane oxidation and metal reduction in soil under elevated CO Xu C; Zhang N; Zhang K; Li S; Xia Q; Xiao J; Liang M; Lei W; He J; Chen G; Ge C; Zheng X; Zhu J; Hu S; Koide RT; Firestone MK; Cheng L Glob Chang Biol; 2023 Aug; 29(16):4670-4685. PubMed ID: 37221551 [TBL] [Abstract][Full Text] [Related]
40. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria. Okubo T; Liu D; Tsurumaru H; Ikeda S; Asakawa S; Tokida T; Tago K; Hayatsu M; Aoki N; Ishimaru K; Ujiie K; Usui Y; Nakamura H; Sakai H; Hayashi K; Hasegawa T; Minamisawa K Front Microbiol; 2015; 6():136. PubMed ID: 25750640 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]